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Abstract

Given an investment universe, we consider the vector ρ(w) of correlations of all assets to a portfolio with
weights w. This vector offers a representation equivalent to w and leads to the notion of ρ-presentative
portfolio, that has a positive correlation, or exposure, to all assets. This class encompasses well-known
portfolios, and comes as a complement to the notion of representative portfolio, that has positive amounts
invested in all assets (e.g. the market-cap index).

We then introduce the concept of maximally ρ-presentative portfolios, that maximize under no particular
constraint an aggregate exposure f(ρ(w)) to all assets, as measured by a symmetric, increasing and concave
real-valued function f . We provide a basic characterization of these portfolios that is independent of f ,
show that they are long-only, form a union of polytopes and are quite rare. However, these portfolios offer
a unifying framework for many well-known and possibly constrained long-only portfolios.

We also establish a correspondence between some classic long-only portfolio optimization problems con-
strained to have maximum weights and unconstrained problems whose objective involves ρ(w). This extends
the analytical results obtained in Jagannathan and Ma (2003) by characterizing explicitly the impact on
the objective of these constraints often used by practitioners. Finally, we propose several theoretical and
numerical applications that illustrate our results.

Keywords: Portfolio Construction, Correlation Optimization, Portfolio Constraints, Representative Port-
folios, Portfolio Diversification, Rho-presentative, Maximally Rho-presentative.

1 Introduction

For more than a decade, new systematic and quantitative investment processes have attracted significant in-
terest in the field of asset management. Without being exhaustive, we first briefly discuss how some of these
strategies could be rediscovered in the context of the present article.

A simple portfolio delivering an exposure to the overall market that is different from the market capital-
ization weighted index is the Equally Weighted (EW) portfolio. This particular choice is not new, with [8]
claiming that it dates back to 400 AD. Using volatility-adjusted weights as an alternative representation for
a portfolio naturally leads to the concept of Equal-Volatility-Weighted portfolio (EVW). The relative contri-
bution of each asset to the risk of a portfolio gives another way of representing it, and leads to the concept
of portfolio that Equalizes these Risk Contributions or ERC (see [12, 17]). Following a different path, in Fun-
damental indexation [1], Arnott et al. proposed equity portfolios with weights proportional to key accounting
measures such as sales, revenues and income. Such a portfolio is representative of a universe in the sense that
it invests in each company in proportion to its “economic footprint” rather than its capitalization.

As we have seen, approaches such as EW, EVW, ERC and Fundamental Indexation emerge as a result of
alternative representations for portfolio weights. As we shall see in this paper, (possibly constrained) optimized
portfolios such as the Minimum Variance (MV, see [13]) and the Most Diversified Portfolio (MDP, see [6, 7])
can also be obtained through the representation of a portfolio by its correlations - or exposures - to all assets.

In practice, these long-only investment processes may be modified in a number of ways when reaching the
implementation phase. An important consideration for portfolios that optimize a given objective function is for
example the addition of maximum weight constraints. These are imposed by some regulators and implemented
by practitioners, and it is important to understand their impact on the initial objective. In [9], it is shown that
imposing such constraints for the MV problem is equivalent to minimizing an unconstrained variance objective
using a modified covariance matrix. However, a limitation of the method is that the modified matrix depends
on Lagrange multipliers that are either known after the MV optimization or determined through a numerically
demanding optimization (a constrained max likelihood on matrices).
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1.1 Contributions of this Paper

A New Portfolio Representation via Correlations. The usual representation of a portfolio, that consists in
reporting its weights in each asset of the investment universe, may not directly indicate to which degree the
portfolio is exposed to a particular asset. For instance, not holding any financial stock does not necessarily
mean no exposure to the financial sector. This observation prompts a new representation of portfolios: given
a long-short portfolio w, we consider in Section 2 its correlation spectrum ρ(w) that stores its correlations to
the assets of the universe and prove that it carries all the information needed to recover w up to its leverage.

Notions of Representativity and ρ-presentativity. The capitalization weighted portfolio is usually viewed as
being representative of the assets of its universe. Such representative portfolios have positive amounts invested
across all assets, leading us to introduce in Section 3 the notion of ρ-presentative portfolio, that admits a
positive correlation, or exposure, to all assets. Note that this definition is not limited to long-only portfolios.

Optimized long-only portfolios such as the MDP and the MV are ρ-presentative without necessarily holding
all the assets. In contrast, the market capitalization portfolio, the EW or the EVW, invested across all assets,
are not necessarily ρ-presentative. Both categories intersect as, for instance, the ERC resides in both.

Furthermore, portfolios that are ρ-presentative satisfy a fundamental property that is not true in general:
the (not necessarily unique) least correlated long-only portfolio to a ρ-presentative portfolio is an asset. Using
this key result, we prove that a long-only portfolio is always positively correlated to at least one asset and give
a uniform lower bound for this correlation. We tackle a converse of this result in the next section.

Maximally ρ-presentative Portfolios. To complement the notion of ρ-presentative portfolio, we introduce
in Section 4 the concept of maximally ρ-presentative portfolio. By definition, such a portfolio maximizes an
aggregate exposure f(ρ(w)) ∈ R to all assets as measured by some increasing, symmetric and concave function
f . We show that maximally ρ-presentative portfolios are long-only. To establish this result, the key is to prove
that for any portfolio that is not long-only there always exists a long-only portfolio that is more correlated to all
assets. In addition, we characterize explicitly this set of portfolios: these are essentially the long-only portfolios
whose exposures form a non-increasing function of their volatility weighted weights. Furthermore, we show
that these portfolios form a union of polytopes and that they are quite rare as, essentially, any permutation
of a maximally ρ-presentative portfolio that is different from it is not maximally ρ-presentative.

However this new class encompasses many well-known portfolios. For instance the EVW is, amongst all
long-short portfolios, the portfolio that maximizes its average correlation to all the assets. We also prove
that the MDP is the portfolio that maximizes its minimal correlation to all the assets amongst all long-short
portfolios. We refine this result by showing that the MDP maximizes its minimal correlation to all long-only
factors, defined as factors that are replicable by possibly leveraged long-only portfolios of assets belonging to
the universe. Similar results are established for the ERC, MV and EW portfolios.

On the Impact of Maximum Weight Constraints. We prove in Section 4.3 that a constrained MV or MDP
problem with maximum weight 1

k is essentially equivalent to an unconstrained maximization of an average
of the k smallest entries of ρ(w). In addition to proving, for instance, that the constrained MDP is maxi-
mally ρ-presentative, this result characterizes the impact on the objective of these constraints and is therefore
related to [9]. In our case, the objective is explicit and does not involve a priori unknown Lagrange multipliers.

An Alternative Framework for Constructing Portfolios. As we shall see in Section 4.4, our results provide
a unifying framework as well-known - possibly constrained - investment strategies maximize an unconstrained
objective that is a function of the spectrum ρ(w).

Applications. In Section 5.1, we give a theoretical application of our results on constrained portfolios by
extending the “Core Properties” of [7] to the constrained case. In Section 5.3, we perform a numerical experi-
ment where we consider more than 2000 US funds with unknown composition to pinpoint those that qualify
for being maximally ρ-presentative. Doing so we also derive a formula to compute the realized diversification
of a fund with unknown composition, using time-series only.
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1.2 Assumptions and Notations

Assumption. In this paper, we assume that the covariance matrix of the assets Σ is positive-definite. This
yields a clear presentation at the cost of a slight loss of generality. To see this, observe that, using the limiting
case of the Cauchy-Schwarz inequality, this hypothesis is sufficient to prove:

Proposition 1.1. Two portfolios are identical up to leverage if and only if they are perfectly correlated.

If Σ is only positive semi-definite, the proposition does not hold. However, the statements where we prove
that portfolios are identical could be reformulated by claiming that they are perfectly correlated. As a result,
in several places one can weaken our assumption without impacting significantly the assertions (see Remark
4.17 for a detailed discussion). Note also that we do not assume in this paper that Σ has nonnegative entries.
This would have shortened some of our proofs (for instance in Sections 4.2 or 4.3) but would be less relevant
to covariances observed in broad financial markets. Lastly, in this paper, we do not discuss how Σ is computed
in practice and the data that are used to do so.

Notations. We consider a universe of n ≥ 2 assets and denote Σ, C, σ, their covariance matrix, correlation
matrix, and volatilities vector. These matrices are related by Σ = D(σ)CD(σ), where D(σ) is the diagonal
matrix with σ as a diagonal. Denoting ⟨·, ·⟩ the Euclidean inner-product in Rn, the nonnegative σΣ (w) :=

⟨Σw,w⟩
1
2 denotes the volatility of a portfolio with weights w ∈ Rn and ∥w∥1 =

∑n
i=1 |wi| its leverage. Given

w with σΣ (w) > 0, its Diversification Ratio and its correlation to a portfolio x with σΣ(x) > 0 are defined by

DRΣ (w) :=
⟨w, σ⟩
σΣ (w)

and ϱΣ (w, x) :=
⟨Σw, x⟩

σΣ(w)σΣ(x)
.

The subscript indicates that the matrix Σ is used for the calculations, and will be omitted when clear from the
context. Let us also introduce the set of long-short unlevered portfolios and its long-only unlevered version:

Π := {w ∈ Rn / ∥w∥1 = 1} and Π+ := {w ∈ Π / ∀i ∈ {1, · · · , n}, wi ≥ 0}.

It is important to note that, up to leverage, any non-zero long-short portfolio is represented within Π.
To simplify our calculations, we shall denote ⊙ (resp. ⊘) the entry-wise multiplication (resp. division)

between matrices. Whenever we write that a matrix Σ ≻ 0 (resp. Σ ≽ 0), we mean that it is positive definite
(resp. positive semi-definite) whereas when two vectors x, y ∈ Rn are such that x ≻ y (resp. x ≽ y), it means
that ∀i, xi > yi (resp. ∀i, xi ≥ yi). For any x ∈ Rn, we shall denote x(i) the ith order statistic of x, that is

defined by the redordering x(1) ≤ x(2) ≤ · · · ≤ x(n). Alternatively we shall denote x↑ (resp. x↓) the vector that
contains the elements of x sorted in non-increasing (resp. non-decreasing) order. Talking about orderings, a
function f : Rn → R is increasing or order preserving if x ≻ y implies that f(x) > f(y) for any x, y ∈ Rn. Such
a function, if continuous, is also non-decreasing since whenever x ≽ y, one has f(x) ≥ f(y) for any x, y ∈ Rn.

We quickly review the portfolios we consider in this paper starting with the EW and the EVW defined by
wew = 1/n and wevw = 1⊘σ

⟨1,1⊘σ⟩ . The MV wmv minimizes σΣ over Π+ and the ERC solves for werc⊙ (Σwerc) =

n−1σ2(werc)1 in Π+. The long-only MDP w∗ maximizes DRΣ over Π+. Abusing notations, we call long-short
“MDP” the portfolio w̄ := Σ−1σ/∥Σ−1σ∥1 that maximizes DRΣ over Π and we always refer to the long-only
portfolio when using MDP alone. In addition, we consider the market capitalization weighted portfolio denoted
MKT, and a long-short portfolio called PCA and denoted wpca defined as an eigenvector of Σ. We refer to the
aforementioned literature for discussions on the existence, uniqueness and other properties of these portfolios.

2 A New Portfolio Representation via Correlations

A key aspect of this paper is the use of an alternative portfolio representation that takes into account the
exposure of a portfolio to all assets of the investment universe. A candidate for such a representation is the
concept of correlation spectrum that we present in this section.

2.1 Definition and Key Property of the Correlation Spectrum

Definition 2.1. The correlation spectrum of a portfolio with weights w ∈ Rn \ {0} is the vector ρΣ(w) ∈ Rn

such that for any index i ∈ {1, · · · , n}

ρΣ(w)i := ϱΣ(w, ei)
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where ei ∈ Π+ is the single-asset portfolio long asset i.

In other words, ρΣ (w) = σΣ (w)−1 (Σw) ⊘ σ. Note that specializing Σ = C, one has ρC(w) = σC(w)
−1Cw.

The subscripts Σ or C will be omitted whenever clear from the context.

The correlation spectrum alone allows to compare the signed exposures of a given portfolio to each asset
in the universe. Consider for example a portfolio that has a positive correlation to asset a that is twice that
to asset b: a positive one standard deviation return of either asset can be expected to result in a positive
portfolio return that is twice as large for asset a than asset b. Note that another measure of exposure, namely
the marginal risk contribution (see also [16]), will be briefly considered in Section 4.3.2.

Finally, we show that, given a fixed leverage it is equivalent to represent a long-short portfolio by its weights
or by its correlation spectrum:

Proposition 2.2. The mapping w ∈ Π 7→ ρ(w) ∈ E := {z ∈ Rn, ⟨C−1z, z⟩ = 1} is bijective.

Proof. For w ∈ Π, ⟨C−1ρ(w), ρ(w)⟩ = σ(w)−2⟨Σ−1Σw,Σw⟩ = 1. Furthermore, given z ∈ E , we define
ρ−1(z) := Σ−1(z ⊙ σ)/∥Σ−1(z ⊙ σ)∥1 ∈ Π and verify readily that ρ ◦ ρ−1 = ρ−1 ◦ ρ = I.

Example 2.3. To illustrate our definition, we pick the MSCI USA universe and plot in Figure 1 the indepen-
dently sorted vectors ρ (w)↓ associated to the EVW, MV, ERC, MDP, long-short MDP and MKT portfolios.
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Figure 1: Correlation spectra sorted independently for the MDP, long-short MDP, MV, ERC, EVW and MKT
portfolio in the MSCI USA over 01/2014-03/2017. The flat region for the MDP spectrum was mentioned in
the First Core Property of [7]. Indeed, the MDP is more correlated to the stocks it does not hold than to those
it holds and it has the same correlation to the latter ones (see Section 5.1 in this paper for a generalization).

2.2 Other Properties of the Correlation Spectrum

The following proposition contains a composition formula that gives the expression of the spectrum of the
convex combination of two long-short portfolios as a function of their individual spectra:

Proposition 2.4. Take two different w0, w1 ∈ Π and θ ∈ (0, 1) with wθ := θw1 + (1− θ)w0 ∈ Rn \ {0}. Then,

ρ(wθ) = dθ(µθρ(w1) + (1− µθ)ρ(w0))

with dθ =
θσ(w1)+(1−θ)σ(w0)

σ(wθ)
> 1 and µθ =

θσ(w1)
θσ(w1)+(1−θ)σ(w0)

≥ 0.

Proof. As wθ ̸= 0, ρ(wθ) =
1

σ(wθ)
Σ(θw1 + (1− θ)w0)⊘ σ = θσ(w1)

σ(wθ)
ρ(w1) +

(1−θ)σ(w0)
σ(wθ)

ρ(w0). As w1 ̸= w0, dθ > 1
as σΣ is strictly convex.

This result is reminiscent of the diversification axiom in [2] which states that for a coherent risk measure,
the risk associated with a weighted combination of assets is no larger than the weighted combination of the
individual risks of the assets. Indeed, the scaling dθ that appears in the above formula measures exactly such
an effect. A version of this proposition for an arbitrary number of portfolios is provided in the Appendix.

In the rest of the paper, we shall use the mapping ϕ : Π+ → Π+ defined by ϕ (w) := 1
⟨w,σ⟩w⊙σ (and already

considered in [6]). It is a bijection and, denoting x = ϕ (w), its inverse is given by w = ϕ−1 (x) := 1
⟨x,1⊘σ⟩x⊘σ.

ϕ is helpful as it allows treating assets as if they had identical volatilities. Its use leads to relations that simplify
many calculations and that we gather in the following proposition. Its proof is deferred to the Appendix.
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Proposition 2.5. The function ϕ is a bijection from Π+ → Π+ and given w1, w2 ∈ Π+,
ρΣ (w1) = ρC (x1) , ϱΣ(w1, w2) = ϱC(x1, x2), σΣ(w1) = ⟨1, x1 ⊘ σ⟩−1σC(x1) and DRΣ(w1) = σC(x1)

−1 ≥ 1.

3 Notions of Representativity and ρ-presentativity

The capitalization weighted index is usually regarded as representative of its investment universe, and has by
definition a positive weight on each asset. This consideration leads to:

Definition 3.1. A portfolio w ∈ Rn is representative if w ≻ 0.

This definition has some limitations as the weight of an asset in a portfolio may not accurately measure
the exposure of the portfolio to that asset. Therefore, to compare the exposure of a portfolio to several stocks
we may use a measure that relies on correlations, prompting the following definition:

Definition 3.2. A portfolio w ∈ Rn \ {0}, is ρ-presentative if ρ(w) ≻ 0.

This definition leaves the way open to long-short portfolios as such a portfolio may be ρ-presentative. Let
us now give few examples of ρ-presentative portfolios:

Proposition 3.3. The long-only ERC, MV and MDP are ρ-presentative. The EW, EVW, the market cap-
italization weighted index MKT and a PCA portfolio are not necessarily ρ-presentative. The long-short Max
Sharpe portfolio Σ−1µ is ρ-presentative if and only if the excess expected returns µ ≻ 0.

Proof. Let us prove that the MDP is ρ-presentative. To do so let us first establish that

argmax
w∈Π+

DR (w) = ϕ−1

(
argmin
x∈Π+

σC (x)

)
.

Both w 7→ DR (w) and w 7→ ρ(w) are well-defined on Π+. The continuity over the compact Π+ of w 7→ DR (w)
and x 7→ σC (x) shows that there exist elements in Π+ maximizing the former and minimizing the latter. Our
claim follows from Proposition 2.5 that implies DR(w) = σC(x)

−1 hence maximizing DR amounts to minimize
σC . As C ≻ 0, x∗ = ϕ(w∗) is unique and the same holds for w∗. Applying the KKT theorem (cf. [4, 15])
to minx∈Π+ σC (x) shows that the solution x∗ solves Cx∗ = σ2

C (x∗)1+ λ, with λ ⊙ x∗ = 0 and λ ≽ 0, hence
ρC (x∗) = σC (x∗)1 + λ

σC(x∗) . So min ρC (x∗) = σC (x∗) as x∗ ∈ Π+ has a positive entry associated to a zero

entry of λ. Finally, by Proposition 2.5, ρΣ (w∗) = ρC (x∗) and σC(x
∗) = DR(w∗)−1. To sum up,

min ρΣ (w∗) = min ρC (x∗) = σC (x∗) = DR (w∗)−1 > 0. (3.1)

In particular, the MDP w∗ satisfies ρ (w∗) ≽ 1
DR(w∗) ≻ 0.

Similarly, by the MV first order condition, Σwmv ≽ σ2 (wmv)1, hence, ρ (wmv) ≽ σ (wmv) ⊘ σ ≻ 0. The
long-only ERC solves werc ⊙ (Σwerc) = n−1σ2 (werc)1, hence, ρ (werc) = n−1σ (werc) ⊘ (werc ⊙ σ) ≻ 0. Note
that, this portfolio exhibits a nice feature if ρ-presentativity is the goal: the lower the correlation to an asset,
the higher its weight. Taking the EW or EVW of a large collection of highly correlated assets to which is
added another asset sufficiently negatively correlated to the others proves that these portfolios are not ρ-
presentative. The same argument holds in theory for the MKT portfolio. Lastly, observe that ∀i ∈ {1, · · · , n},
sgn((ρ(wpca))i) = sgn((wpca)i) so wpca is not necessarily ρ-presentative.

The classes of representative and ρ-presentative portfolios intersect as the ERC lies in both. However, these
two classes are not included in one another: as there exist representative portfolios that are not ρ-presentative,
there are ρ-presentative portfolios that are not necessarily representative. The MDP is such a portfolio (cf.
for instance Figure 1). Lastly, the Max Sharpe portfolio is an example of a portfolio that is not necessarily
long-only but that may happen to be ρ-presentative.

Let us pursue with a fundamental property of ρ-presentative portfolios:

Lemma 3.4. Given a ρ-presentative portfolio w, the (not necessarily unique) least correlated long-only portfolio
to w is an asset. Actually for w ∈ Π such that ρ(w) ≽ 0,

min
θ∈Π+

ϱ (w, θ) = min ρ (w) . (3.2)

This is based on the fact that ∀ (w, θ) ∈ (Rn \ {0},Π+), ϱ (w, θ) = DR (θ) ⟨ϕ (θ), ρ (w)⟩.

5



Proof. The last identity follows from the generalized version of Proposition 2.4 that is in the Appendix but we
can also give a short and direct proof as ∀ (w, θ) ∈ (Rn \ {0},Π+) ,

ϱ (w, θ) =
⟨w,Σθ⟩

σ (w)σ (θ)
=

⟨θ ⊙ σ, ρ (w)⟩
σ (θ)

=
⟨θ, σ⟩
σ (θ)

⟨ϕ (θ) , ρ (w)⟩ = DR (θ) ⟨ϕ (θ) , ρ (w)⟩ .

To prove the identity (3.2), observe that the infimum over θ is always smaller than the right-hand side so we
just need to focus on the reverse inequality. As ϕ (θ) ∈ Π+, ∀z ∈ Rn, ⟨ϕ (θ) , z⟩ ≥ min (z), and so

ϱ (w, θ) = DR (θ) ⟨ϕ (θ) , ρ (w)⟩ ≥ DR (θ)min ρ (w) ≥ min ρ(w) (3.3)

where we used DR(θ) ≥ 1 and our assumption that guaranties that min ρ(w) ≥ 0. We conclude the proof of
the identity by taking the minimum with respect to θ ∈ Π+, which exists by continuity of θ 7→ ϱ(w, θ) on Π+.

In case ρ(w) ≻ 0, assume that the min over θ is attained by θ∗ ∈ Π+, then combining (3.3) and the fact that
ϱ(w, θ∗) = min ρ(w), one has DR(θ∗) = 1. As σΣ is strictly convex, this is possible only if θ∗ is an asset.

The lemma implies that, whenever all entries of Σ are positive, the least correlated long-only portfolio to
another long-only portfolio is an asset. However, in general one cannot drop the assumption ρ(w) ≽ 0 as one
can build a counter-example with a matrix that has negative entries and where we can verify that

min
θ∈Π+

ϱ (w, θ) < min ρ (w)

for some portfolios w that are therefore not ρ-presentative. See Figure 5 on page 21 for such a counter-example
that cannot occur in the classical Euclidean setting.

A consequence of Lemma 3.4 is derived from its combination with the identity (3.1):

Proposition 3.5. A long-only portfolio is positively correlated to at least one asset, as, denoting w∗ the MDP,

min
w∈Π+

max ρ(w) ≥ [min ρ(w∗)]2 = [DR(w∗)]−2 > 0.

Proof. Given w ∈ Rn \{0} and considering ϕ as defined before Proposition 2.5, ϕ(w∗) ∈ Π+ which implies that

max ρ (w) ≥ ⟨ϕ (w∗) , ρ (w)⟩ = DR (w∗)−1ϱ (w,w∗) = min ρ (w∗) ϱ (w,w∗) ,

where we applied the last part of Lemma 3.4. Then we take on both ends the minimum (which exists by
continuity of max(ρ(·)) and ρ(·, w∗) on the compact Π+) and as ρ(w∗) ≻ 0, we can apply (3.2) in Lemma 3.4:

min
w∈Π+

max ρ(w) ≥ min ρ (w∗) min
w∈Π+

ϱ (w,w∗) = [min ρ (w∗)]2 > 0.

As a weak converse of this result, observe that a ρ-presentative porfolio w cannot be short-only as by (3.1)
one has 0 < ⟨w,Σw∗⟩ and Σw∗ ≻ 0. This direction will be explored further in the next section.

4 Maximally ρ-presentative Portfolios

As we have seen in the previous section, it is possible to build portfolios that are ρ-presentative i.e. such that
they have a positive exposure to all assets. In this section we introduce a complementary notion by considering
portfolios that maximize their overall exposure to all assets.

4.1 Definition and Properties of Maximally ρ-presentative Portfolios

Definition 4.1. A portfolio wf ∈ Rn \ {0} is maximally ρ-presentative if there exists a function f : Rn → R
that is increasing, symmetric and concave such that

wf ∈ argmax
Rn\{0}

f ◦ ρ. (4.1)

We shall denote R the set of all unlevered maximally ρ-presentative portfolios.
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A maximally ρ-presentative portfolio maximizes its exposures to all assets through an aggregate view of-
fered by f which measures how ρ-presentative a portfolio is as a whole, given its exposures. Specifically:

(i) f is increasing to advantage a portfolio that is more ρ-presentative than another. In other words, if
ρ(w) ≻ ρ(y) then f ◦ ρ(w) > f ◦ ρ(y). This assumption excludes for instance f = ∥ · ∥2.

(ii) f is concave which is consistent with the property of ρ(wθ) in Proposition 2.4. Furthermore, we shall see
that this assumption is key to prove that for fixed f , there is a unique maximally ρ-presentative portfolio.
As a counter-example, for f(x) =

∑n
i=1 x

3
i and Σ = I, optima of (4.1) are single asset portfolios.

(iii) f is symmetric i.e. invariant under a permutation of coordinates as there is a priori no reason for it to
change if we permute the exposures. This excludes f = ⟨·, θ⟩ with θ ∈ Π+ \ {n−11}.

The examples we just gave will be further discussed in Section 4.4 and we shall see in the sequel how the
concepts of ρ-presentative and maximally ρ-presentative portfolios compare to each other.

Let us now establish the existence and uniqueness of a such a portfolio for a given f :

Proposition 4.2. For a concave increasing f , the maximum in (4.1) is reached by a unique unlevered portfolio.

Proof. We denote ∥ · ∥ the norm associated to the inner-product defined by C−1. As ρΣ : Π → E = {z, ∥z∥ = 1}
is a bijection, one has supΠ f ◦ ρ = supE f with the left problem having a unique maximum iff the same is true
for the right one so we may focus on the latter one.

Existence: as in finite dimension, any concave function is continuous in the interior of its domain (see the
monograph [15, Theorem 10.1]), f attains its supremum m∗ on the compact ball E .

Uniqueness: assuming the contrary, there are z1 ̸= z2 such that ∥z1∥ = ∥z2∥ = 1 and f(z1) = f(z2) = m∗.
Then considering a strict convex combination zθ of z1 and z2, ∥zθ∥ < 1 by strict convexity of the norm whereas
by concavity of f , f(zθ) ≥ m∗. Now as λ 7→ ∥zθ + λ1∥ is continuous on [0,+∞) and tends to +∞ when
λ → +∞, by the intermediate value theorem ∃λ∗ ∈ (0,+∞) such that ∥zθ + λ∗1∥ = 1. On the other hand, as
f is increasing, f(zθ + λ∗1) > f(zθ) ≥ m∗, hence a contradiction with the definition of m∗.

The following result and ensuing theorem show that long-only portfolios have a special role amongst long-
short portfolios seeking to maximize their exposure to all assets:

Lemma 4.3. For any y ∈ Π \ Π+, there exists w ∈ Π+ such that ρ(w) ≻ ρ(y). However this cannot hold for
long-only portfolios. Indeed, if w ∈ Π, y ∈ Π+ and ρ(w) ≽ ρ(y) then w = y.

Proof. To prove the first statement, consider the convex problem minC σ
2
Σ with C = {z ∈ Rn / z ≽ 0,Σz ≽ Σy}.

It is feasible as we may always consider a rescaled enough long-only ρ-presentative portfolio and admits a unique
solution v since its objective is strictly convex and the constraints are linear. Without loss of generality, one
can assume that v ̸= 0 as otherwise Σy ≼ 0 and any long-only ρ-presentative satisfies our first statement.

Denoting λ, µ ≽ 0 the Lagrange multipliers associated to the constraints v ≽ 0 and Σ(v − y) ≽ 0, the
solution v solves the following KKT conditions: Σv = λ + Σµ, λ ⊙ v = 0 and µ ⊙ (Σ(v − y)) = 0. The first
two conditions imply that σ2(v) = ⟨Σv, µ⟩ and ⟨Σv, µ⟩ = ⟨λ, µ⟩ + σ2(µ) ≥ σ2(µ) while the last one implies
⟨Σv, µ⟩ = ⟨Σy, µ⟩. Then, as a result of the Cauchy-Schwarz inequality,

σ2(v) = ⟨Σv, µ⟩ = ⟨Σy, µ⟩ ≤ σ(y)σ(µ) ≤ σ(y)⟨Σv, µ⟩
1
2 = σ(y)σ(v). (4.2)

Since v ̸= 0, we have σ(v) > 0 and therefore σ(v) ≤ σ(y).
Let us prove that σ(v) = σ(y) cannot occur. If the identity holds then all inequalities in (4.2) are equalities

hence ⟨λ, µ⟩ = 0 and ⟨Σy, µ⟩ = σ(y)σ(µ). Then by the limiting case of the Cauchy-Schwarz inequality, there
exists γ ∈ R such that y = γµ. Combining this observation and the fact that ⟨λ, µ⟩ = 0 with the first KKT
condition yields ⟨Σv, y⟩ = ⟨λ, y⟩ + ⟨Σµ, y⟩ = γ⟨λ, µ⟩ + ⟨Σy, µ⟩ = ⟨Σy, µ⟩. Put together with (4.2) this implies
that ⟨Σv, y⟩ = σ(v)σ(y) i.e. ϱ(v, y) = 1 and thus y = v ∈ Π+. This contradicts our assumption on y.

Therefore one necessarily has σ(v) < σ(y). Consider a long-only ρ-presentative that we rescale enough so
that u ∈ C, Σu ≻ Σv ≽ Σy, and σ(u) > σ(y) > σ(v). By continuity of σΣ on C, there exists by the intermediate
value theorem a strict convex combination w = αu + (1 − α)v ∈ C with α ∈ (0, 1) such that σ(w) = σ(y).
Then, as Σw = αΣu+ (1− α)Σv ≻ Σy, one has 1

σ(w)Σw = 1
σ(y)Σw ≻ 1

σ(y)Σy hence ρ(w) ≻ ρ(y) (the proof is

constructive as α is the root of a quadratic equation that one can readily compute).
To prove the second statement, rescaling y, we may consider that y ≽ 0 and σ(y) = σ(w). Then the

assumption implies Σw ≽ Σy. Taking the inner-product with y, ⟨Σw, y⟩ ≥ σ2(y) = σ(w)σ(y) hence w = y.
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Before getting further we recall that for any v ∈ Rn we denote v↑ (resp. v↓) the vector that contains the
elements of v sorted in non-increasing (resp. non-decreasing) order and that the bijective ϕ : Π+ → Π+ is
defined by ϕ (w) := 1

⟨w,σ⟩w ⊙ σ. Moreover we define (Π+)↑ := {w ∈ Π+ / 0 ≤ wn ≤ wn−1 ≤ · · · ≤ w1 ≤ 1}.
Equipped with these notations and Lemma 4.3 we are ready to prove the main result of this section:

Theorem 4.4. Maximally ρ-presentative portfolios are exactly the portfolios w ∈ Π+ that satisfy

⟨ϕ(w)↑, ρ(w)↓⟩ = ⟨ϕ(w), ρ(w)⟩. (4.3)

In other words, as ⟨ϕ(w), ρ(w)⟩ = DR(w)−1,

R = argmax
w∈Π+

(
⟨ϕ(w)↑, ρ(w)↓⟩DR(w)

)
.

Moreover, the mapping

w ∈ (Π+)↑ 7→ argmax
y∈Π

⟨w, ρ(y)↓⟩ ∈ R (4.4)

is well-defined and surjective onto the set of maximally ρ-presentative portfolios.

Representing maximally ρ-presentative portfolios w by their volatility adjusted weights ϕ(w) ∈ Π+, their (n−1)-
dimensional Lebesgue measure λn−1 is such that

λn−1(ϕ(R)) ≤ λn−1(Π
+)

n!
.

And lastly, R is a finite union of polytopes.

Proof. Let us start by proving that maximally ρ-presentative portfolios are long-only. Consider yf ∈ argmaxΠ f◦
ρ for some f that is continuous and increasing. Then yf ∈ Π+ as otherwise, by Lemma 4.3, ∃wf ∈ Π+ such
that ρ(wf ) ≻ ρ(yf ), hence f ◦ ρ(wf ) > f ◦ ρ(yf ) and yf is not optimal.

Now, remark that by the last identity in Lemma 3.4

∀θ ∈ Π+, max
w∈Π

⟨ϕ(θ), ρ(w)⟩ = ⟨ϕ(θ), ρ(θ)⟩ = DR−1(θ) > 0 (4.5)

which means that ϕ(θ) is an outer normal to the ellipsoid E at ρ(θ).
We pursue by proving that any maximally ρ-presentative wf also satisfies (4.3) and we refer to Figure 2

for the geometric intuition behind the argument. Considering Sn the group of permutations of {1, · · · , n} let
us first note that for any w ∈ Π+,

⟨ϕ(w)↑, ρ(w)↓⟩ = min
p∈Sn

⟨ϕ(w), p ◦ ρ(w)⟩.

Assuming that (4.3) does not hold, there exists p ∈ Sn with ⟨ϕ(wf ), p ◦ ρ(wf )⟩ < ⟨ϕ(wf ), ρ(wf )⟩. As ϕ(wf ) is
an outer normal to the ellipsoid E at ρ(wf ), there exists a strict convex combination zθ of p ◦ ρ(wf ) and ρ(wf )
that lies in the interior of the domain enclosed by E . We may then conclude as in the proof of the uniqueness
in Proposition 4.2. Indeed, as f is concave and symmetric f(zθ) ≥ f ◦ ρ(wf ). Then by the intermediate value
theorem ∃λ∗ ∈ (0,+∞) such that zθ + λ∗1 ∈ E . Thus ∃y ∈ Π such that ρ(y) = zθ + λ∗1. As f is increasing
f ◦ ρ(y) > f(zθ) ≥ f ◦ ρ(wf ) contradicting the optimality of wf . Thus wf satisfies (4.3).

Conversely, given θ ∈ Π+ we introduce the function fθ : z 7→ minp∈Sn⟨ϕ(θ), p(z)⟩. This mapping as well
as (4.4) are well-defined as the objectives are continuous over the compact Π. Moreover fθ is increasing,
symmetric and concave on Rn and fθ(z) = ⟨ϕ(θ)↑, z↓⟩. So if we take θ ∈ Π+ that satisfies (4.3), then

⟨ϕ(θ), ρ(θ)⟩ = fθ ◦ ρ(θ) ≤ max
w∈Π

fθ ◦ ρ(w) = max
w∈Π

min
p∈Sn

⟨ϕ(θ), p ◦ ρ(w)⟩ ≤ max
w∈Π

⟨ϕ(θ), ρ(w)⟩ = ⟨ϕ(θ), ρ(θ)⟩ (4.6)

where in the two last steps we took p = Id and used (4.5). Thus θ maximizes fθ ◦ ρ hence, θ ∈ R.
By the previous analysis, for any w ∈ R, ∃x := ϕ(w)↑ ∈ (Π+)↑ such that w = argmaxy∈Π⟨x, ρ(y)↓⟩ i.e.

(4.4) is surjective. In addition, by the partition principle, there exists an injection R ↪−→ (Π+)
↑
.

Given p ∈ Sn, we denote ∆p := {w ∈ Π+ / p ◦ ϕ(w) = ϕ(w)↑, p ◦ ρ(w) = ρ(w)↓} the portfolios whose
volatility weighted weights and spectra are ordered in opposite directions by the same permutation p. This set
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is a polytope and we observe that if not empty R ∩ {w ∈ Π+ / p(ϕ(w)) = ϕ(w)↑} = ∆p. Thus R is a finite
union of polytopes as R =

∪
p∈Sn

∆p.
In the sequel, through the use of ϕ, we can assume that σ = 1. First, observe that for w ∈ R and any

permutation p such that p(w) ̸= w, p(w) ̸∈ R, Indeed, reasoning as in (4.6), we can show that ⟨w, ρ(w)⟩ ≤
⟨p(w), ρ(p(w))⟩. So, if both w, p(w) ∈ R, one has ⟨w↑, ρ(w)↓⟩ ≤ ⟨p(w)↑, ρ(p(w))↓⟩ that is maxΠ+ fw ◦ ρ =
fw ◦ ρ(w) ≤ fw ◦ ρ(p(w)). As by Proposition 4.2, fw admits a unique maximum, p(w) = w. Note that this also
tells us that if w ∈ R, then for any permutation p such that p(w) ̸= w, one has σΣ(w) < σΣ(p(w)).

We are now ready to prove that the measure of R is small as compared to that of Π+. Denoting λn−1

the (n− 1)-dimensional Lebesgue measure, we remark that by (4.3) - that we have now proven - R is closed,
hence λn−1-measurable. Now, denoting N ⊂ Π+, the set of portfolios with each having at least two identical
weights, its measure λn−1(N ) = 0. Thus, defining R̃ = R \ N the set of maximally ρ-presentative portfolios
that have distinct coordinates,

λn−1(R) =
∑
p∈Sn

λn−1

[
R̃ ∩ {w ∈ Π+, p(w) = p(w)↑}

]
=
∑
p∈Sn

λn−1

[
p
(
R̃ ∩ {w ∈ Π+, p(w) = p(w)↑}

)]
as permutations are isometries. Now as any permutation of w ∈ R that is distinct from it is not in R, the
measure of R is equal to the measure of the union of the disjoint sets p(R̃ ∩ {w ∈ Π+, p(w) = p(w)↑}) that
all belong to (Π+)↑ and is therefore smaller than 1

n!λn−1(Π
+).

In fact, this theorem shows that for any maximally ρ-presentative portfolio w, there exists a permutation
that sorts its volatility weighted weights ϕ(w) in non-decreasing order and its exposures ρ(w) in non-increasing
order. Therefore, its exposures form a non-increasing function of its volatility weighted weights. This theorem
also shows that maximally ρ-presentative portfolios are rare. Indeed, given n assets, if one drew uniformly
the volatility adjusted weights of N long-only portfolios, there is less than N

n! chance to have drawn those
of a maximally ρ-presentative portfolio. Finally, the above characterization allows to prove that maximally
ρ-presentative portfolios are diversified in the sense that their Diversification Ratio is never less than that of
an EVW portfolio. More precisely:

Proposition 4.5. A maximally ρ-presentative portfolio wf satisifies the following bounds

0 <
DR(wevw)

ϱ(wf , wevw)
≤ DR(wf ) ≤ DR(w∗)ϱ(wf , w

∗), (4.7)

where we recall that w∗ denotes the MDP.
In terms of the objective f , we have the following tight bounds

f(DR(w∗)−11) ≤ f ◦ ρ(wf ) ≤ f(DR(wevw)
−11). (4.8)

Proof of (4.7): By Proposition 2.5, the last identity in Lemma 3.4 and the characterization (4.3),

DR−1(wf ) = min
p∈Sn

⟨p ◦ ϕ(wf ), ρΣ(wf )⟩ = min
p∈Sn

⟨p(xf ), ρC(xf )⟩ ≤ ⟨ρC(xf ), n−11⟩ = DR−1(wevw)ϱ(wf , wevw).

As by Theorem 4.4, wf ∈ Π+ then DR(wf ) ≤ DR(w∗)ϱ(wf , w
∗) by the second core property in [7] (this latter

result will be generalized in Proposition 5.2). This finishes the proof of (4.7).
Proof of (4.8): Considering the shift operator S(x1, · · · , xn) = (x2, · · · , xn, x1), ∀w ∈ Rn \ {0},

f ◦ ρ(w) = 1

n

n∑
k=1

f ◦ ρ(w) = 1

n

n∑
k=1

f(Skρ(w)) ≤ f

(
1

n

n∑
k=1

Skρ(w)

)
= f(⟨ρ(w), n−11⟩1) = f(⟨ρ(w), wew⟩1)

where we invoked the symmetry and the concavity. Then, invoking Lemma 3.4, for any w ∈ Rn \ {0},

f ◦ ρ(w) ≤ f(⟨ρ(w), wew⟩1) = f(⟨ρ(w), ϕ(wevw)⟩1) = f(DR(wevw)
−1ϱ(w,wevw)1). (4.9)

Therefore, as f is increasing, maxΠ f ◦ ρ ≤ f(DR(wevw)
−11) whereas on the other hand by (3.1) and (4.9),

f(DR(w∗)−11) = f(min ρ(w∗)1) ≤ f ◦ ρ(w∗) ≤ max
Π

f ◦ ρ ≤ f(⟨ρ(wf ), n
−11⟩1). (4.10)

Inequalities (4.9) and (4.10) are illustrated in Figure 2.
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ρ(w̄)

ρ(wf )

p ◦ ρ(wf )

ρ(wevw)

ρ(w∗)

⟨ρ(wf ), n
−11⟩1

⟨ρ(wevw), n
−11⟩1

ϕ(wf )

0

E = ρ(Π)

Figure 2: A schematic view of the geometry behind the proofs and results of Proposition 4.2, Theorem 4.4
and Proposition 4.5. The dashed lines in red are orthogonal as ϕ(wf ) is an outer normal to the ellipsoid E at
ρ(wf ). The set R of maximally ρ-presentative portfolios resides in the orange region that is the intersection
between the surface E and the strip delimited by the blue hyperplanes. As f is increasing, this comes from
(4.9) and (4.10). The green dashed segment is the set of convex combinations of the permutations p ◦ ρ(wf ).

Portfolios that are ρ-presentative are exactly those that are positively correlated with all long-only port-
folios. In general, a maximally ρ-presentative portfolio is not ρ-presentative. However, we shall see in the
following proposition how these two concepts come together:

Proposition - Definition 4.6. A maximally ρ-presentative portfolio wf is weakly ρ-presentative in the sense
that its average exposure is positive. Moreover, we have a bound uniform in f that involves the MDP w∗:

n−1⟨ρ(wf ),1⟩ ≥ DR−1(wf ) ≥ min ρ(w∗) > 0. (4.11)

Furthermore maximally ρ-presentative portfolios are positively correlated to a special long-only portfolio,
namely the EVW. In particular,

ϱ(wf , wevw) ≥
DR(wevw)

DR(w∗)
. (4.12)

Proof. Combining (3.1) and (4.7) we obtain (4.11). Also, as f is increasing, we get n−1⟨ρ(wf ),1⟩ ≥ min ρ(w∗)
directly from (4.10) without this time relying on Theorem 4.4. Inequality (4.7) yields directly (4.12).

According to (4.7), portfolios reduced to assets - and whose DR equals one - are obviously long-only but
never maximally ρ-presentative. In the following proof, we are going to consider another example of a long-only
portfolio that is never maximally ρ-presentative, namely

w♯ ∈ argmin
w∈Π+

ϱ(w,wevw).

This portfolio may happen to be different from any asset as soon as the EVW is not ρ-presentative (see
Lemma 3.4 and the remark below it). As indicated by the previous theorem, many long-only portfolios are
not maximally ρ-presentative. In particular, considering the limiting case of inequality (4.12) with w∗ = wevw,
it appears that there is only one maximally ρ-presentative portfolio which is the EVW/MDP. This particular
case occurs if and only if 1 is an eigenvector of the correlation matrix, as shown by the KKT conditions given
by the MDP problem. Nonetheless, in general, R is not a singleton but it is not large either as in the following
proposition we show that there are large open regions of Π+ with no maximally ρ-presentative portfolios.
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Proposition 4.7. The set of maximally ρ-presentative portfolios satisfies the following inclusions:

R ⊂ F :=

{
w ∈ Π+, ϱ(w,wevw) ≥

DR(wevw)

DR(w)

}
⊂ F̃ :=

{
w ∈ Π+, ϱ(w,wevw) ≥

DR(wevw)

DR(w∗)

}
( Π+.

Moreover, both F and F̃ are closed convex sets. In particular, the tangent hyperplane to F at wevw separates
Π+ in two sets such that one of them does not contain any maximally ρ-presentative portfolio.

Lastly, the last inequality in the definition of F̃ can be taken strict if the long-short MDP w̄ ̸= w∗.

Proof. Step 1: The inclusion R ⊂ F follows from (4.7). Denoting w̄ = Σ−1σ, we remark that for any w ∈ Π,

DR(w̄)ϱ(w̄, w) =
⟨σ,Σ−1σ⟩
σΣ(Σ−1σ)2

⟨ΣΣ−1σ,w⟩
σΣ(w)

=
⟨σ,Σ−1σ⟩

⟨ΣΣ−1σ,Σ−1σ⟩
⟨σ,w⟩
σΣ(w)

= 1×DR(w). (4.13)

Combining this identity with (4.7) yields ∀w ∈ R, ϱ(wevw, w̄) ≤ ϱ(w,wevw)ϱ(w, w̄) which, letting λ :=
⟨Σwevw, w̄⟩, can be rewritten λσ(w)2 ≤ ⟨Σw,wevw⟩⟨Σw, w̄⟩ = 1

4

(
⟨w,Σ(w̄ − wevw)⟩2 + ⟨w,Σ(w̄ + wevw)⟩2

)
.

Let us now remark that ∀w ∈ R, ⟨w,Σ(w̄ + wevw)⟩ ≥ 0 as by (4.7), ⟨w,Σwevw⟩ ≥ 0 and that ∀w ∈
R, ⟨w,Σw̄⟩ ≥ 0 as this is true in Π+ by (4.13) and as R ⊂ Π+ by Theorem 4.4. Then considering the

matrix M := λΣ + (Σ (w̄−wevw)
2 )(Σ (w̄−wevw)

2 )′ we may rewrite F = {w ∈ Π+, ∥w∥M ≤ ⟨w,Σ(wevw+w̄
2 )⟩}. Note

that λ > 0 once again by (4.13) so M ≻ 0 and therefore F is closed and convex as it is the intersection of a
closed and non-degenerate hyperbolic cone with the regular simplex Π+. The rest of the claim follows from
the fact that wevw lies on the boundary of F and in the interior of Π+.

Step 2: As ∀w ∈ Π+, DR(w∗) ≥ DR(w), F ⊂ F̃ . To establish F̃ ( Π+, let us prove that O1 :=
{w ≻ 0, ϱ(w,wevw)DR(w∗) < DR(wevw)} is not empty. Considering (4.9) we are tempted to take the minimum
on both sides and to do so let w♯ ∈ argminw∈Π+ ϱ(w,wevw) that does not depend on f and that exists as the
objective is continuous on the compact Π+. As ϱ(w♯, wevw) ≤ min ρ(wevw), we have by (4.9) f ◦ ρ(w♯) ≤
f(DR(wevw)

−1min ρ(wevw)1). If min ρ(wevw) > 0, then as DR(wevw) > 1, f ◦ ρ(w♯) < f(min ρ(wevw)1) ≤
f◦ρ(wevw). Otherwise, we know there exists a ρ-presentative u ∈ Rn\{0} such that min ρ(wevw) ≤ 0 < min ρ(u)
and thus f ◦ρ(w♯) < f(DR(wevw)

−1min ρ(u)1) < f ◦ρ(u) since DR(wevw) > 1. All in all, there exists w♯ ∈ Π+

such that f ◦ ρ(w♯) < maxRn\{0} f ◦ ρ i.e. w♯ is not maximally ρ-presentative. Note that one cannot expect

ρ(w♯) ≺ ρ(wevw) as it contradicts Lemma 4.3. We recall (see (4.11)) that a maximally ρ-presentative wf is
such that n−1⟨ρ(wf ),1⟩ ≥ min ρ(w∗). Then equipping Rn with the usual topology, let us consider A := {w ∈
Rn, w ≻ 0}, F := A its topological closure and the open set O := {w ∈ Rn \ {0}, n−1⟨ρ(w),1⟩ < min ρ(w∗)}.
So if w ∈ O then w cannot be ρ-presentative. We verify F ∩O ̸= ∅. Using twice Lemma 3.4 and then (3.1)

DR(wevw)⟨ρ(w♯), wew⟩ = ϱ(w♯, wevw) ≤ min ρ(wevw) ≤ ⟨ϕ (w∗) , ρ (wevw)⟩ = ϱ(wevw, w
∗)/DR (w∗) ≤ min ρ (w∗)

hence ⟨ρ(w♯), wew⟩ < min ρ(w∗) which shows that w♯ ∈ O ∩ F . However by [3, Chapitre 1, §1, Proposition 5],
O ∩F = O ∩A ⊂ O ∩A which proves that w♯ ∈ O ∩A and that O1 = O ∩A ̸= ∅. The fact that O1 is an open
set and that O1 ⊂ O proves our claim.

To prove that F̃ is convex let us remark that F̃ = {w ∈ Π+, n−1⟨ρ(w),1⟩ ≥ min ρ(w∗)} which is indeed
convex by Proposition 2.4. To finish, let us now consider the equality case in the definition of F̃ . For any wf ∈
R, it can equivalently be written ⟨n−11, ρ(wf )⟩ = min ρ(w∗). In this case (4.10) implies f ◦ ρ(wf ) = f ◦ ρ(w∗)
and as wf is unique wf = w∗ and thus ⟨n−11, ρ(w∗)⟩ = min ρ(w∗) which implies in turn wf = w∗ = w̄.

Before closing this section, let us give a few concluding remarks regarding the concept of maximally ρ-
presentative portfolios. Firstly, in our analysis, the symmetry of the function f associated to such a portfolio
is crucial. It is determined on financial ground since there is no reason to single out any asset before constructing
a ρ-presentative portfolio. Now, without this assumption, it can be noted that any long-only portfolio θ would
solve (4.1), as it would maximize the increasing and linear function f = ⟨·, ϕ(θ)⟩.

Secondly, a parallel can be drawn between the mean-variance utility criterion used for portfolio construction
[13] and the objective maximized in this section. Indeed, the function f being increasing by assumption, it
will tend to favor portfolios with a higher average exposure. Also, as f is symmetric and concave, it is Schur
concave (see [14]). Therefore, for portfolios having a given average exposure, those that have exposures that
are “less spread out” (in the words of Marshall et al. [14]) will also be favored.
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In a nutshell, one could view each f generating a maximally ρ-presentative portfolio as providing a particular
trade-off between the average, the dispersion and possibly higher moments of the spectrum of a portfolio. To
illustrate this idea, denoting respectively E(v) and Var(v) the mean and variance of v ∈ Rn, let us note that

f(ρ(w)) = E(ρ(w))− λ

2
Var(ρ(w))

is an objective that is concave symmetric if λ ≥ 0 (hence Schur concave) but increasing only for λ < 1. Remark
that the rightmost term could also be modified to take into account interactions between exposures.

The case λ ≥ 1 is excluded in the previous equation as the dominant term −Var(x) is not increasing even
though it is Schur concave. This mitigates the use of this latter assumption alone.

Example 4.8. We conclude this section with Figures 3 and 4 where we depict the sets of maximally ρ-
presentative portfolios R that we got for respectively three and four assets whose covariance matrices are

Σ1 =

 1 −0.4 −0.8
−0.4 1 0.7
−0.8 0.7 1

 ,
Σ2 =


1 −0.05 −0.7 0.2

−0.05 1 −0.3 −0.6
−0.7 −0.3 1 0.5
0.2 −0.6 0.5 1

 .

Figure 3: We represent the regular simplex Π+ along with the set of maximally ρ-presentative portfolios R
(in yellow), the sets F (in dark violet) and F̃ (whose complement in Π+ is indicated in light violet). From left
to right the bullets depict the long-short MDP, the MDP and the EVW with the latter two being maximally
ρ-presentative as we are going to see. Note that the long-short MDP and the EVW lie on the boundary of the
ellipsoid that determines F . The tangent hyperplane to F at wevw separates Π+ in two sets such that one of
them (depicted in pink) does not contain any maximally ρ-presentative portfolio.

Figure 4: We represent the set of maximally ρ-presentative portfolios {(w1, w2, w3) ∈ [0, 1)3 / (w1, w2, w3, 1−
w1 −w2 −w3) ∈ R} that is the union of three polytopes. From left to right the large bullets depict the MDP,
ERC and EVW that are indeed maximally ρ-presentative as we are going to see. In Section 4.3.1, we shall
also see that the constrained MDPs define a continuous path (depicted in green) within R that connects the
EVW and the MDP.
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4.2 Alternative Definitions of Well-Known Portfolios and Implications

As shown in Section 3, the MV, MDP and ERC are ρ-presentative. We investigate in this section whether these
portfolios and the EVW are maximally ρ-presentative, yielding alternative definitions for these portfolios.

4.2.1 The Equal Volatility Weighted Portfolio

To improve the overall exposure of a portfolio one may maximize the average of its correlations to the assets:

Proposition 4.9. The EVW is maximally ρ-presentative as it is the unlevered portfolio that maximizes its
average correlation to all the assets amongst all non-zero long-short portfolios. Said otherwise,

wevw = argmax
w∈Π

⟨ρ (w) ,1⟩.

Proof. For w ∈ Π, ⟨1, ρ (w)⟩ = σΣ (w)−1 ⟨1⊘ σ,Σw⟩ = σΣ (1⊘ σ)ϱ(w,wevw) that is maximized by wevw and
any other such unlevered portfolio is perfectly correlated to it and thus identical by Proposition 1.1.

The fact that the optimum over long-short portfolios is attained by a unique long-only portfolio can also be
derived from Lemma 4.3 and Proposition 4.2 without exhibiting the solution. Moreover, let us recall that even
though the EVW is maximally ρ-presentative it is not necessarily ρ-presentative, as was shown in Proposition
3.3. However, as expected, it is weakly ρ-presentative as ⟨1, ρ (wevw)⟩ = σΣ (1⊘ σ) > 0.

4.2.2 The Most Diversified Portfolio

We may wonder whether it is possible to build a portfolio that is both ρ-presentative and maximally ρ-
presentative. For a positive answer, let us focus on portfolios that maximize their minimal exposure:

Proposition 4.10. The MDP w∗ is the unlevered portfolio that maximizes its minimal correlation to all assets
amongst all long-short portfolios. Moreover, amongst long-short portfolios, the MDP is the unlevered portfolio
that maximizes the minimum correlation to any long-only portfolio. Said otherwise,

argmax
w∈Π+

DR (w) = argmax
w∈Π

min ρ (w) = argmax
w∈Π

min
θ∈Π+

ϱ (w, θ) . (4.14)

In fact, ∀ (y, w) ∈ (Rn \ {0},Π+) , min ρ(y) ≤ min ρ (w∗) = minθ∈Π+ ϱ (w∗, θ) = DR (w∗)−1 ≤ DR (w)−1 .
In addition to being ρ-presentative, the MDP is also maximally ρ-presentative.

Proof. We start with the first claim of the proposition. Let w ∈ Rn \ {0} then given that ϕ(w∗) ∈ Π+,

min ρ (w) ≤ ⟨ϕ (w∗) , ρ (w)⟩ = DR (w∗)−1ϱ (w,w∗) = min ρ (w∗) ϱ (w,w∗) (4.15)

where we employed the last part of Lemma 3.4 and identity (3.1). Taking the supremum on Π on both
ends proves that it is attained by w∗ and any other such portfolio y∗ ∈ Π satisfies min ρ(w∗) = min ρ(y∗) ≤
min ρ(w∗)ϱ(y∗, w∗) and is thus perfectly correlated to w∗ as min ρ(w∗) > 0 by (3.1) hence y∗ = w∗ by Propo-
sition 1.1. This finishes the proof of the first statement of the proposition.

It remains to prove the second identity in (4.14). As minθ∈Π+ ϱ(w, θ) ≤ min ρ(w) with equality for w = w∗

by the identity in Lemma 3.4, one has w∗ ∈ argmaxw∈Πminθ∈Π+ ϱ (w, θ). Now for any y∗ in the rightmost set,

0 < min ρ(w∗) = min
θ∈Π+

ϱ(w∗, θ) = min
θ∈Π+

ϱ(y∗, θ) ≤ min ρ(y∗)

which proves that y∗ is ρ-presentative so by Lemma 3.4 the last inequality is an identity. Then taking w = y∗

in (4.15) and simplifying by min ρ(y∗) = min ρ(w∗) on both ends, we obtain ϱ(y∗, w∗) ≥ 1 hence y∗ = w∗ by
Proposition 1.1. This finishes the proof of the second statement of this proposition.

This proposition proves that the MDP is the portfolio that maximizes its minimal exposure to all long only
portfolios. As such, the MDP maximizes its lowest exposure to all long-only factors, defined as factors that
are replicable by leveraged long-only portfolios of assets belonging to the universe.
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Remark 4.11. In view of these results, one could think of constructing long-only portfolios that minimize
their maximal exposure, in the spirit of a minimum variance approach. Formally, one may do so by solving

min
w∈Π+

max ρ(w).

This problem that we already encountered in Proposition 3.5 may admit many local minima and not necessarily
a unique global solution. This makes this approach challenging when reaching the implementation phase in a
financial setting. Furthermore, the set of optima of the min-max problem may not contain the solution of the
max-min problem. One may verify numerically both of these remarks by considering three assets with Σ = C,
C1,2 = C1,3 ≥ 0.7, C2,3 < 0.4 and C ≻ 0.

4.2.3 The Equal Risk Contribution Portfolio

Having considered some basic functions f , we pursue with the natural logarithm to prove that the ERC is
maximally ρ-presentative:

Proposition 4.12. The ERC is maximally ρ-presentative as

werc = argmax
w∈Π

⟨ln(ρ(w)),1⟩

where the natural logarithm is taken entry-wise with the convention ln ≡ −∞ on [−1, 0].
Furthermore,

DR(wevw) ≤ DR(werc) ≤ DR(w∗) and ϱ(werc, wevw) ≥
DR(wevw)

DR(w∗)
.

Proof. Consider f : Rn → [−∞, 0] defined by x 7→ ⟨ln(x),1⟩ with the convention ln ≡ −∞ on (−∞, 0].
As f admits infinite values its domain is different from Rn so we need to show that supΠ f ◦ ρ is indeed
attained. As there exists a ρ-presentative portfolio u ∈ Π+, there exists ε > 0 such that ρ(u) > ε1 and thus
⟨ln(ρ(u)),1⟩ > n ln(ε). So we can narrow our search to {w ∈ Π, ⟨ln(ρ(w)),1⟩ ≥ n ln(ε)/2} which is bounded
and closed - by continuity of w 7→ ⟨ln(ρ(w)),1⟩ - and thus a compact. This justifies that the sup is attained.

To deal only with finite values in the objective, we can add the non-binding constraint ⟨ln(ρ(w)),1⟩ ≥ ln(ε)
in the maximization problem. However as any portfolio w that satisfies this constraint is such that

∏n
i=1 ρ(w)i ≥

ε with ρ(w)i ∈ (0, 1], necessarily ρ(w) ≽ ε1 which in turn implies that Σw ≽ σΣ(w)εσ ≽ (minΠ σΣ)εσ. The
objective remains finite under this new constraint which is less restrictive and not binding either.

Moreover, the optimization is performed over Π and by 0-homogeneity of ρ, this corresponds to three
exclusive cases: either ⟨1, w⟩ = 1, or ⟨1, w⟩ = 0, or ⟨1, w⟩ = −1. By Lemma 4.3, given a long-short portfolio
there is always a long-only portfolio that improves the objective so we know that any solution is in Π+, as a
consequence we can discard the two latter non-binding constraints and keep only ⟨1, w⟩ = 1.

To sum up, we justified the following identity

max
w∈Π

⟨ln(ρ(w)),1⟩ = max {⟨ln(ρ(w)),1⟩ / ⟨w,1⟩ = 1, Σw ≽ ασ}

where we set α = (minΠ σΣ)ε. The objective is finite and continuously differentiable over a set of linear
constraints so we may apply the KKT theorem. However, as Σw ≽ ασ is not binding, it will not appear
in the KKT conditions. Now, denoting w the maximizer of the latter problem, the KKT condition reads
∇w

(
w 7→ n

2 ln(σ
2(w))− ⟨ln(Σw),1⟩

)
(w) = µ1 with µ ∈ R. Computing the differential, we get

n
Σw

σ2(w)
= Σ(1⊘ Σw) + µ1

and then taking the inner product with w we observe that µ = 0. Therefore, composing with Σ−1 we get
Σw ⊙ w = n−1σ2(w)1 which, by [17, Corollary 1.2], is solved by a unique portfolio that is the ERC.

Finally, as werc ∈ R, the remaining inequalities follow from Proposition 4.5.

In this proposition, the inequalities between the Diversification Ratios of the EVW, ERC and MDP are
the analog to those obtained with their volatilities in [12, Appendix A3]. Furthermore, as noted previously in
Section 4.1, if 1 is an eigenvector of the correlation matrix the inequalities of the previous proposition imply
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that werc = wevw = w∗ which is in this case the unique maximally ρ-presentative portfolio.

Now, let us remark that invoking Theorem 4.4, it is clear from the identity

ρ (werc) = n−1σ (werc)⊘ (werc ⊙ σ) = n−1DR−1(werc)⊘ ϕ(werc)

that the ERC is indeed maximally ρ-presentative. However, we went through the effort of the previous analysis
to not only give a direct proof but also exhibit a non-trivial objective that is a function of ρ(w). In particular,
this objective does not involve explicit long-only constraints as for usual formulations of this problem; which
otherwise would lead to 2n − 1 non long-only solutions as shown in [17, Prop. 1.3]. In fact, this formulation
suggests alternative ways of computing the ERC, that could complement the approach taken in [17].

4.2.4 The Minimum Variance Portfolio

In the same spirit as in the previous sections, we characterize MV portfolios using the spectrum ρ(w):

Proposition 4.13. One has

min
w∈Π+

σ(w) = max
w∈Rn\{0}

min (ρ(w)⊙ σ)

and the maximum is attained by a unique portfolio (up to leverage) that is the MV.
In fact, ∀ (y, w) ∈ (Rn \ {0},Π+),

min(ρ(y)⊙ σ) ≤ min(ρ (wmv)⊙ σ) = σ (wmv) ≤ σ (w) .

Furthermore, the MV is not necessarily maximally ρ-presentative.

Proof. Let f : y ∈ Π 7→ min (ρ(y)⊙ σ), then if f(y) ≥ σ(wmv), necessarily
Σy
σ(y) ≽ σ(wmv)1 which implies

ρ(y, wmv) = 1 hence y = wmv. This proves that {f ≥ σ(wmv)} ⊂ {wmv}. To check that the superlevel is
not empty we remark that f(wmv) ≥ σ(wmv). This follows from the KKT theorem applied to minΠ+ σΣ that
shows that ∃λ ≽ 0 and Σwmv/σ (wmv) = σ (wmv)1+ λ/σ(wmv) with λ⊙ wmv = 0 hence the claim.

Finally, to be maximally ρ-presentative, by Proposition-Definition 4.6, the MV needs to be weakly ρ-
presentative and to satisfy the bound ϱ(wmv, wevw) ≥ DR(wevw)

DR(w∗) . Consider a situation where all correlations

are identical: then wevw = w∗ and as a consequence we also have wmv = w∗. Writing the KKT conditions
satisfied by w∗ and wmv implies readily that 1 is an eigenvector of CDσΣ

−1 = CDσD
−1
σ C−1D−1

σ = D−1
σ which

leads to a contradiction if we consider assets that have different volatilities.

4.3 On the Impact of Maximum Weight Constraints

In practice, asset managers may use maximum weight constraints when imposed by regulators or when using
objective functions that are very sensitive to the estimation of their parameters (a common problem for long-
short mean-variance maximization). To address this issue, robust covariance estimators are routinely used by
asset managers with some popular choices involving shrinkage methods [11] or factor models [5].

The use of maximum weight constraints and robust covariance estimators can be closely related. Indeed, [9,
Proposition 1] shows that, for the MV portfolio, imposing nonnegative and maximum weight constraints is
equivalent to using a robust version of the original covariance matrix. This matrix is robust in the sense
that extreme covariances are the most likely to be “shrunk” towards more reasonable values. A limitation of
the method is that the modified matrix depends on Lagrange multipliers that are known only after the MV
optimization or determined through a numerically demanding maximization of a likelihood function over a set
of matrices (cf. [9, Proposition 2]).

Another route proposed in this paper is to identify a priori an essentially unconstrained optimization
problem whose objective depends explicitly on the maximum weight constraint, and is equivalent to the original
constrained problem. This new problem gives as a result a clear understanding of the maximum weight
constraint on the original objective function. The constrained portfolios we consider here have a volatility-
adjusted maximum weight constraint, that is they belong to

Π+
σ,r :=

{
w ∈ Π+ / ∀i ∈ {1, · · · , n}, wiσi

⟨w, σ⟩
≤ 1

r

}
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for some real r. In particular, portfolios with maximum weight constraint 1/r belong to Π+
1,r.

We first present the unconstrained optimization problems that are equivalent to the original problems
solved by the MDP and MV respectively, and conclude this subsection by discussing the implications of these
two results.

4.3.1 An Alternative Definition of the Constrained Most Diversified Portfolio

We consider in this section an aggregation of the correlation spectrum that generalizes those proposed in
Propositions 4.9 and 4.10 for the EVW and the MDP.

Definition 4.14. For r ∈ {1, · · · , n}, the rank-r ρ-presentativity measure of w ∈ Rn \ {0}, denoted RMr (w),
is the average of the r smallest correlations to the assets. Considering the reordering (ρ(w))(i) ≤ (ρ(w))(i+1),

RMr (w) :=
1

r

r∑
i=1

(ρ (w))(i).

Using the lingo of Section 4.1, RMr(w) = ⟨ρ(w)↓, r−11r⟩ where 1r is the vector whose r first coordinates
are equal to one and zero elsewhere. We could also consider real-valued r ∈ [1, n] thanks to the identity
⟨ρ(w)↓, r−11r⟩ = minθ∈Π+

1,r
⟨ρ(y), θ⟩.

The average of the r smallest elements of a vector, is concave increasing and symmetric. We show that the
constrained MDP w∗

r , that maximizes DR over Π+
σ,r, is also the portfolio that maximizes RMr. This therefore

implies that it is maximally ρ-presentative and that it can be obtained by an unconstrained optimization of an
objective that incorporates the long-only and volatility-adjusted maximum constraints:

Proposition 4.15. The constrained MDP w∗
r is maximally ρ-presentative as it is the unlevered portfolio that

maximizes the rank-r ρ-presentativity measure RMr over non-zero long-short portfolios. Said otherwise

argmax
w∈Π+

σ,r

DR (w) = argmax
w∈Π

RMr (w) . (4.16)

In fact,

∀ (y, wr) ∈
(
Rn \ {0},Π+

σ,r

)
, RMr (y) ≤ RMr (w

∗
r) = DR (w∗

r)
−1 ≤ DR (wr)

−1. (4.17)

To prove this proposition we shall use properties of the constrained MDP that relate both DR and RMr:

Proposition 4.16. w∗
r exists, is unique and DR (w∗

r)RMr (w
∗
r) = 1. In addition, ∀ (y, wr) ∈

(
Rn \ {0},Π+

σ,r

)
,

RMr (y) ≤ ϱ (y, w∗
r)RMr (w

∗
r), (4.18) DR (wr) ≤ ϱ (wr, w

∗
r)DR (w∗

r). (4.19)

Having this proposition at our disposal, we are ready to prove the proposition:

Proof of Proposition 4.15. The existence of w∗
r follows from Proposition 4.16. Taking the supremum on both

sides of (4.18) shows that w∗
r attains it so w∗

r is maximally ρ-presentative, and all portfolios achieving the
supremum are perfectly correlated to it. By Proposition 1.1, the MDP is the unique unlevered portfolio that
maximizes RMr. Remaining results follow directly from Proposition 4.16.

Proof of Proposition 4.16. The function ϕ introduced before Proposition 2.5 is a bijection from Π+
σ,r → Π+

1,r,

and DR (w) = σC (ϕ (w))−1. Now as Π+
σ,r and Π+

1,r are compact, and DR and σC are continuous on these sets,

they reach their extrema and one can write ϕ
(
argmaxΠ+

σ,r
DR

)
= argminΠ+

1,r
σC . Taking x∗ in the rightmost

set, by Proposition 2.5, we just need to establish 1
r

∑r
i=1(ρC (x∗))(i) = σC (x∗) to prove the first claim. To do

so, the idea is to find the average of the r smallest entries of Cx∗ by applying the KKT theorem to minΠ+
1,r

σC ,

which, as C ≽ 0, implies that there exist λ ≽ 0, µ ≽ 0 such that x∗ ∈ Π+
1,r verifies the KKT conditions

Cx∗ = s1+ λ− µ, λ⊙ x∗ = 0 and µ⊙
(
r−11− x∗

)
= 0.
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On the one hand, these conditions imply that σ2
C (x∗) = s−⟨µ, x∗⟩ and ⟨µ, x∗⟩ = r−1 ⟨1, µ⟩, so s− r−1 ⟨1, µ⟩ =

σ2
C(x

∗). On the other hand, the two last KKT conditions yield three mutually exclusive cases:
x∗i = 0 ⇒ (λi ≥ 0 and µi = 0) ⇒ λi − µi ≥ 0 (Case 1),

0 < x∗i < r−1 ⇒ (λi = 0 and µi = 0) ⇒ λi − µi = 0 (Case 2),
x∗i = r−1 ⇒ (λi = 0 and µi ≥ 0) ⇒ λi − µi ≤ 0 (Case 3).

As x∗ ∈ Π+
1,r, # {x∗i > 0} ≥ r, so the sum of the r smallest entries of λ− µ is obtained through summation of

all the elements of −µ only (Cases 2 and 3). Therefore,

σC (x∗)

r

r∑
i=1

(ρC(x
∗))(i) =

1

r

r∑
i=1

(Cx∗)(i) =
1

r

r∑
i=1

(s1+ λ− µ)(i) = s+
1

r

r∑
i=1

(−µ)(i) = s− r−1 ⟨1, µ⟩ = σ2
C (x∗)

which proves that DR (w∗
r)RMr (w

∗
r) = 1. To finish, as C ≻ 0, uniqueness of w∗

r comes from that of x∗.
Now let us turn to the proof of (4.18) and (4.19): by the last claim of Lemma 3.4

∀ (y, wr) ∈
(
Rn \ {0},Π+

σ,r

)
, ϱ (y, wr) = DR (wr) ⟨ϕ (wr) , ρ (y)⟩ ≥ DR (wr) min

θ∈Π+
1,r

⟨θ, ρ (y)⟩ = DR (wr)RMr (y) .

Using RMr (w
∗
r)DR (w∗

r) = 1, the two inequalities follow if we take in turn wr = w∗
r and then y = w∗

r .

On the practical side, this proposition provides the “duality gap” (4.17) which makes it possible to assess
the optimality of a long-only portfolio in terms of DR without computing the MDP. Indeed for any w ∈ Π+

σ,r,

0 ≤ DR(wr)
−1 −DR(w∗

r)
−1 ≤ DR(wr)

−1 −RMr(w)

where on the right-hand side we do not use w∗. This can be useful in an algorithm as a stopping criterion.

Remark 4.17. (i) We may conclude that w∗
r is maximally ρ-presentative by invoking Theorem 4.4 once the

identity DR (w∗
r)RMr (w

∗
r) = 1 is established.

(ii) For long-only portfolios neither of the two inequalities (4.18) and (4.19) is superior to the other. Indeed,
consider three assets with Σ = C, C1,2 = C1,3 = 0.7, C2,3 = 0.3 and r = 1. Then the sign of

DR(w)

DR(w∗
r)

− RM r(w)

RM r(w∗
r)

=
σ(w∗)

σ(w)
− min(ρ(w))

σ(w∗)

flips when picking w ∈ {e1, e2}. However (4.18) is more general as it holds for long-short portfolios.

(iii) Moving to another topic, assuming that Σ is positive semi-definite is enough to derive the KKT conditions
in the proof of Proposition 4.16. Under this weaker hypothesis, (4.16) can be established along the same lines
as an identity between sets. The definiteness comes into play to prove that the MDP is unique and that it is the
unique portfolio that maximizes RMr by Proposition 1.1. Dropping the definiteness of Σ, we still know that
all portfolios in the maximizing sets are perfectly correlated. One has to be careful and select w ∈ Π \Ker(Σ)
to avoid dividing by zero in the definition of ρ(w). From the beginning, one could have actually balanced the
definition of Π and the class of matrices that are allowed by picking them in {Σ ≽ 0 / σΣ > 0 on Π}.

4.3.2 An Alternative Definition of the Constrained Minimum Variance

Before concluding this section, we state a generic result that yields Proposition 4.15 in the special case Σ = C
and that is obtained along the same lines:

Theorem 4.18. The minimization of a positive definite quadratic form over the simplex subject to a uniform
maximum constraint can be expressed as an unconstrained optimization as follows:

min
w∈Π+

1,r

σ(w) = max
w∈Rn\{0}

1

r

r∑
i=1

(ρ(w)⊙ σ)(i) ,

where the maximum is attained by a unique unlevered portfolio that is the constrained MV wmv,r (the EW if
r = n). In fact,

∀ (y, w) ∈
(
Rn \ {0},Π+

1,r

)
,
1

r

r∑
i=1

(ρ(y)⊙ σ)(i) ≤
1

r

r∑
i=1

(ρ(wmv,r)⊙ σ)(i) = σ (wmv,r) ≤ σ (w) .
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This gap can be used to assess the optimality of a portfolio without computing the constrained MV.

Furthermore, the constrained MV wmv,r (the EW if r = n) is not necessarily maximally ρ-presentative.

Proof. Conducting an analysis similar to the previous section, one obtains the first two assertions. It remains
to prove that the constrained MV is not necessarily maximally ρ-presentative. The case r = 1 that corresponds
to the unconstrained MV was handled in the proof of Proposition 4.13. To be maximally ρ-presentative, by
Proposition-Definition 4.6, the constrained MV needs to be weakly ρ-presentative and to satisfy the bound
ϱ(wmv,r, wevw) ≥ DR(wevw)

DR(w∗) . Consider a situation where all correlations are identical. Then wevw = w∗ hence
wmv,r = wevw. Now, if r > 1, then by sending the volatility of a single asset to zero, its weight in the EVW can
be made as close to one as one wishes. In this situation, the constrained MV whose weights are bounded by 1/r
is in general different from the EVW. Taking r = n proves that the EW is not maximally ρ-presentative.

This result shows that the constrained MV or the EW maximize an aggregated exposure, where individual
exposures are given by ρ(w)⊙σ. These are usually called marginal risk contributions (see [16]). As such, using
ρ(w)⊙ σ as an alternative measure of exposure would lead to a new framework, where these portfolios would
indeed be maximally exposed. Conducting an analysis similar to the proof of Theorem 4.4, we can prove that
the set of maximally exposed portfolios given this measure of exposures is exactly

Rσ := {w ∈ Π+, σ(w)2 = ⟨w↑, (Σw)↓⟩}

which is small in the sense of Theorem 4.4 and for any w ∈ Rσ, ϱ(w,wew) ≥ σ(w)/σ(wew). In a similar
way, one can carry the results of Theorem 4.4 to the set Rµ that is associated to a general weighted measure
ρ(w) ⊙ µ with µ ≻ 0. In addition to our discussion before Example 4.8, this offers another alternative to
the celebrated approach of Markowitz and is left for further research. Getting to the main subject, the fact
that the constrained MV is not maximally ρ-presentative can also be understood in the context of [7] where it
shown that the MV and EW are not leverage invariant, as opposed to the ERC, EVW and MDP.

4.3.3 Implications of these Alternative Definitions

The results obtained in Sections 4.3.1 and 4.3.2 allow to identify a priori how the objectives maximized by
the MDP and MV are modified by the addition of maximum weight constraints, that are volatility-adjusted
for the MDP. Consider for example the case of the MV portfolio in a universe of 500 assets. Theorem 4.18
shows that minimizing the volatility of a long-only portfolio is equivalent to maximizing the minimal marginal
risk contribution of a long-short portfolio with weights summing to one (cf. Lemma 4.3 and the proof of
Proposition 4.12). Moreover, if a maximum weight constraint of 2% is added, the problem becomes equivalent
to the maximization of the average of the lowest 50 marginal risk contributions of such a long-short portfolio.

A related result is provided in [9, Proposition 1], whereby the problem of minimizing the volatility of
a long-short portfolio whose weights sum to one is studied. The authors show that adding minimum and
maximum weights to this problem is equivalent to solving the original problem using a modified covariance
matrix that is clearly identified. Nevertheless, its analytical form is a priori unknown as it depends on the
Lagrange multipliers associated to the added constraints. However, the authors provide an interpretation of
this modified matrix, and show that the adjustment brought to the original matrix “may reduce [its] estimation
error”. In the remaining of [9], an empirical study is conducted that indeed confirms these claims.

A connection between the results provided in [9] and Proposition 4.15 and Theorem 4.18 can easily be made
in a context where the covariance matrix of the assets needs to be estimated. In this case, the correlation
spectrum ρ(w) and the marginal risk contributions min(ρ(w) ⊙ σ) are subject to estimation errors. Coming
back to our MV example, this means that adding a 2% maximum weight constraint is equivalent to maximizing
an objective that now averages 50 estimated variables. This arguably may contribute to“reduce [its] estimation
error”. This reduction can of course be expected to come at a cost and introduce a bias. However, as so far,
we have assumed that the covariance matrix is given, any further statistical or empirical analysis is beyond
the scope of this paper and is left for future research.

4.4 An Alternative Framework For Constructing Portfolios

So far we have shown that many well-known - possibly constrained - investment strategies maximize their
overall exposure to the assets, as measured by some real-valued f . This in fact provides a unifying framework,
whereby all strategies maximize an unconstrained objective that is a function of the spectrum ρ(w).
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We summarize most of these results in Table 1. Given an investment strategy that is indicated in the first
column, the second column provides the primal objective that is maximized by the corresponding portfolio,
while the third column contains its well-known dual definition. The use of the primal-dual terminology is
justified in Section 5.2. The following columns then indicate whether the considered portfolio is always long-
only, ρ-presentative or maximally ρ-presentative. Key remarks and references are indicated in the last column.

We have also included in the table three portfolios that are obtained using functions f that do not satisfy
at least one of the three assumptions of Definition 4.1. The first such portfolio is the first eigenvector of the
covariance matrix Σ. It is obtained with f(w) = ∥ρ(w)⊙ σ∥2. Indeed,

max
w∈Rn\{0}

∥ρ(w)⊙ σ∥22 = max
w∈Rn\{0}

⟨Σw,Σw⟩
⟨Σw,w⟩

= max
w∈Rn\{0}

∥w∥22
⟨Σ−1w,w⟩

which is solved by the eigenvector of Σ associated to its largest eigenvalue. This function does not satisfy
any of our assumptions and the resulting portfolio maximizes an aggregation of its absolute exposures rather
than its exposures. Secondly, we called “Assets” the portfolios reduced to single assets that are obtained by
maximizing f(x) =

∑n
i=1 x

p
i when we specialize Σ = I and consider p ∈ (2,+∞]. Indeed, for any such p

and any x ∈ Rn \ {0}, f(x) ≤ ∥x∥pp ≤ ∥x∥p2 with equality between these terms occurring only at elements of
the canonical basis. This shows that multiple solutions may be obtained when using a function f that is not
concave. Finally, “generic LO”, is a generic portfolio that is different from the EVW portfolio and is obtained
with a function f that depends on the portfolio weights and is thus not symmetric.

Investment Primal approach: Dual approach:
Strategy Portfolios maximize Weights max
Name f ◦ ρ(w) = proportional to LO ρ-pr ρ-pr Remarks and References
EW ⟨ρ(w)⊙ σ,1⟩ 1 × cf. Prop. 3.3 and Thm. 4.18
EVW ⟨ρ(w),1⟩ 1⊘ σ × × cf. Propositions 3.3 and 4.9

generic LO ⟨ρ(w), ϕ(θ)⟩ θ ∈ Π+ \ {wevw} × f not sym, cf. end of Section 4.1

ERC ⟨ln(ρ(w)),1⟩ wi(Σw)i =
σ2(w)

n × × × cf. Propositions 3.3 and 4.12
MV min ρ(w)⊙ σ argminΠ+ σΣ × × f not sym, cf. Prop 3.3 and 4.13
MDP min ρ(w) argmaxΠ+ DR × × × cf. Propositions 3.3 and 4.10

constr MV
∑r

i=1 (ρ (w)⊙ σ)(i) argminΠ+
1,r

σΣ × f not sym, cf. Thm. 4.18

constr MDP
∑r

i=1 (ρ (w))(i) argmaxΠ+
σ,r

DR × × cf. Proposition 4.15

LS MDP −Var(ρ(w)) ±Σ−1σ × Long-short and ρ-pr, cf. Prop 5.3
Assets ⟨ρ(w)p,1⟩, p > 2 any ei if Σ = I × f not concave, several maximizers

1st eigv of Σ ∥ρ(w)⊙ σ∥2 argmaxw
σ(w)
∥w∥2

f not concave, 1st PCA factor of Σ

max ρ-pr θ ⟨ρ(w)↓, ϕ(θ)↑⟩ θ ∈ R × × cf. Theorem 4.15
mean-var ρ E(ρ(w))− λ

2Var(ρ(w)) × × λ ∈ [0, 1), cf. end of Section 4.1
w♯ −⟨ρ(w),1⟩ − δΠ+(w) × never max ρ-pr, proof of Prop 4.7

min max ρ −min ρ(w)− δΠ+(w) × not unique, Prop 3.5 and Rmk 4.11

Table 1: An Alternative Framework For Constructing Portfolios. We used the following abbreviations: constr:
constrained, eigv: eigenvector, LO: long-only, LS: long-short, ρ-pr: ρ-presentative, max ρ-pr: maximally ρ-
presentative, sym: symmetric. Finally, δΠ+ denotes the function that vanishes on Π+ and that is +∞ elsewhere.

As seen in Table 1, the primal objectives use basic functions and we could think of using convex combinations
of these objectives, in order to create a composite objective. This would allow to not only retrieve all the above
portfolios using a single objective, but all the intermediary portfolios in the spirit of [10]. Nonetheless these
portfolios are not necessarily maximally ρ-presentative. We recall that in Figure 4, we have depicted a path
connecting the EVW to the MDP that resides entirely in the set of maximally ρ-presentative portfolios.

All the primal objectives shown in the above table are functions of ρ(w). The correlation of a portfolio to
all the assets of its investment universe is easily computed and one does not need to know the weights. This
may prove useful in order to assess in an alternative manner, whether a given fund is close to realize its Primal
objective, without knowing the holdings of the fund. We are going to pursue in this direction in Section 5.3.
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5 Applications

5.1 The Core Properties of the Constrained MDP

This section is dedicated to a theoretical application of Proposition 4.15 that also uses some elements of the
proof of Proposition 4.16. To be precise, we state two equivalent definitions of the constrained MDP - as
defined in Section 4.3 - that extend to the constrained case the first and second core properties of [7].

Proposition 5.1 (First Core Property). The MDP w∗
r with volatility-adjusted maximum weight 1/r,

(i) is more or equally correlated to the assets it does not hold than to those it holds,
(ii) is more or equally correlated to the assets that do not saturate the max constraint within those it holds,
(iii) has an identical correlation to the assets that do not saturate the constraint within the assets it holds.

Conversely, any portfolio in Π+
σ,r that satisfies (i), (ii) and (iii) is necessarily the constrained MDP w∗

r .

Proof. Statement (i) reads (w∗
r)i = 0 and (w∗

r)j > 0 =⇒ (ρ(w∗
r))i ≥ (ρ(w∗

r))j . It is enough to prove the

results for x∗ = ϕ−1(w∗
r). Employing the KKT theorem as in the proof of Proposition 4.16 and using the same

notations, (Cx∗)i = s+(λi−µi) ≥ s ≥ s+(λj−µj) = (Cx∗)j . In a similar way, we get (ii). Claim (iii) follows
readily from (Case 2) in the same proof, that is, λj = µj = λi = µi = 0, hence (Cx∗)i = (Cx∗)j . Conversely,
assume that w = ϕ(x) satisfies all claims that then imply that

0 = xi < xj ≤ xk = r−1 =⇒ (Cx)i ≥ (Cx)j ≥ (Cx)k.

If m is the number of saturated stocks, m ≤ r since ⟨x,1⟩ = 1. Denoting I (resp. J) the indices of the stocks
that saturate (resp. do not saturate) the constraint, then

σC(x)
2 =

∑
i∈I

(Cx)ixi +
∑
j∈J

(Cx)jxj =
1

r

m∑
i=1

(Cx)(i) +
∑
j∈J

(Cx)jxj

by (i) and (ii). Now given that by (iii), ∃ν ∈ R/∀j ∈ J, (Cx)j = ν, it follows

σC(x)
2 =

1

r

m∑
i=1

(Cx)(i) + ν
∑
j∈J

xj =
1

r

m∑
i=1

(Cx)(i) + ν

(
1−

∑
i∈I

xi

)
=

1

r

m∑
i=1

(Cx)(i) + ν
(
1− m

r

)
,

where in the two last identities we used the fact that ⟨x,1⟩ = 1 and the definition of I. However,

1

r

r∑
i=1

(Cx)(i) =
1

r

m∑
i=1

(Cx)(i) +
1

r

r∑
j=m+1

(Cx)(j) =
1

r

m∑
i=1

(Cx)(i) +
ν

r
(r −m)

by (ii) and (iii). Thus, 1
r

∑r
i=1(Cx)(i) = σC(x)

2 which concludes the proof by Proposition 4.15.

Proposition 5.2 (Second Core Property). The following statements are equivalent:

(i) w∗
r is the MDP with volatility-adjusted maximum weight constraint 1/r,

(ii) w∗
r ∈ Π+

σ,r is such that for any wr ∈ Π+
σ,r, DR (wr) ≤ ϱ (wr, w

∗
r)DR (w∗

r).

Proof. (ii) =⇒ (i) as ∀wr ∈ Π+
σ,r, DR (wr) ≤ ϱ(wr, w

∗
r)DR (w∗

r) ≤ DR (w∗
r), i.e. w

∗
r has the highest DR that

can be achieved over the set of constraints Π+
σ,r. (i) =⇒ (ii) is simply inequality (4.19).

5.2 A Not-So-Typical Saddle-Point Problem

In Proposition 4.10, we introduced the problem

max
w∈Rn\{0}

min
θ∈Π+

ϱ(w, θ),

which may remind us of a minimax matrix game problem or saddle-point problem but it is different in nature as
(w, θ) 7→ ϱ (w, θ) is not (even quasi) concave-convex. Let us pick an example with three assets with covariance

Σ =

 1.0 −0.3 −0.4
−0.3 1.0 −0.5
−0.4 −0.5 1.0

 .
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In this case the MDP and MV are both equal to w∗ ≈ [0.31, 0.32, 0.36]. This example is an opportunity to
show the different nature of the objective functions in Proposition 4.10 where we actually proved

max
w∈Rn\{0}

min ρ(w) = max
w∈Rn\{0}

min
θ∈Π+

ϱ(w, θ) = min
w∈Π+

σ(w).

These identities may remind us a primal-dual framework with the primal and dual problems on both ends.
One can argue as in the proof of Proposition 4.12, to reduce the search set to those long-short w that

sum to one. Therefore, to illustrate these problems, we can depict in Figure 5 the levels lines of the objective
functions (x, y) 7→ σ (x, y, 1− x− y) and (x, y) 7→ min ρ (x, y, 1− x− y). As they are significantly different
we also draw the level lines of (x, y) 7→ minθ∈Π+ ϱ ((x, y, 1− x− y) , θ). This latter chart allows us to better
understand the second identity of (4.14) in Proposition 4.10 which is implied by Lemma 3.4 and to shed some
light on the remark that follows this lemma (see the caption of Figure 5 for the details). To further illustrate
the duality suggested by the inequalities (4.17) we depict the graphs of the three functions we just mentioned.
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min
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̺(w, θ)
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Figure 5: As indicated by the level lines, the MV/MDP depicted by a star minimizes w 7→ σ(w) while
maximizing both the non-smooth w 7→ min ρ(w) and w 7→ minθ∈Π+ ϱ(w, θ) as proven in Proposition 4.10. The
non-convex superlevels indicate that the latter functions are not quasi-concave. From the two charts in the
middle, it is clear that there are w ∈ Π+ with minθ∈Π+ ϱ(w, θ) < min ρ(w). By Lemma 3.4, these portfolios
are such that ρ(w) ̸≽ 0. To the right, we plot at the top the graph of w 7→ σ(w) and below the graphs of
w 7→ min(ρ(w)) and w 7→ minθ∈Π+ ϱ(w, θ) which are not smooth. We can observe that these three graphs
intersect at a single point that is the MV/MDP.

5.3 Realized max ρ-presentativity and Realized Diversification

Let us recall that Proposition 4.5 asserts that any maximally ρ-presentative w satisfies the necessary condition

DR(w) ≥ DR(wevw)/ϱ(w,wevw).

In this section, we show how this bound could be used to identify funds that qualify for being maximally
ρ-presentative without knowing their composition. Indeed on the right hand side ϱ(w,wevw) can be measured
by simply computing the correlation between the time series of w and that of wevw. The latter is computed
thanks to the series of the assets of the universe. Lastly, using time series only, the realized DR of a portfolio
with unknown composition can be also measured thanks to the following result already proved in (4.13):

Proposition 5.3. Denoting w̄ = Σ−1σ/∥Σ−1σ∥1 the portfolio that maximizes the DR over Π, for any w ∈ Π,

DR(w) = DR(w̄)ϱ(w̄, w).

Thus the long-only MDP is the portfolio that is most correlated to the long-short MDP amongst all long-only
portfolios. In this sense, the long-only MDP is the projection of the long-short MDP over long-only portfolios.
Note that, using this identity, one can reformulate (4.19) in a way that may remind us a triangle inequality:

∀wr ∈ Π+
σ,r, ϱ(wr, w̄) ≤ ϱ (wr, w

∗
r) ϱ(w

∗
r , w̄).

Here, we used ϱ(w∗
r , w̄) ≥ 0 which follows from Proposition 5.3.

Let us get back to our idea, and perform a numerical experiment where we take as a universe 464 stocks of
the MSCI USA (having discarded those that did not trade at least 90% of the days over 01/2013 to 03/2017).
Using the Bloomberg Fund Screening module, we similarly considered daily time-series for funds that satisfy:
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Market Status: Active

Fund Asset Class Focus: Equity

Fund Geographical Focus: International

Currency: USD

Fund Pricing Frequency: Daily

Fund Strategy: Blend

Fund Primary Share Class: Yes

First Date: <= 1/1/2013

Fund Total Assets (mil): >100M

We discarded 71 funds that had obvious price synchronization issues, ending up with 2278 funds for a total
of $7500bn i.e. about half the total net assets invested in the USA in Q1/2016. In Figure 6, we depict the
realized DR(w) of these funds as a function of DR(wevw)/ϱ(w,wevw) and indicate the identity function using
dashed line. A live fund depicted by a red star satisfies the necessary condition as it lies above the dashed line,
as do the forward looking constrained MDPs that are indeed maximally ρ-presentative by Proposition 4.15.
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Figure 6: Realized DR and DR(wevw)/ϱ(wevw, ·) in the USA from 01/13 - 03/17 for 2278 funds representing
half the total net assets invested in the USA in Q1/2016. The fund depicted with a blue star is a theoretical and
forward looking EVW. The green curve depicts all the forward looking constrained MDPs. The green curve and
the dashed line meet precisely at the forward-looking EVW portfolio. The fund in red is the MOST DIV TOBAM

A/B US EQ-A that targets the highest investable DR whereas the fund in black replicates the S&P500. The blue
dots depict all other funds. Only the portfolios that are above the dashed line - that depicts the identity - qualify
for being maximally ρ-presentative as they satisfy the necessary condition DR(w) ≥ DR(wevw)

ϱ(w,wevw) of Proposition
4.5. The green curve corresponds to portfolios that are indeed maximally ρ-presentative by Proposition 4.15.

On a different topic, the fact that some funds have a DR that is less than one may indicate that they are
not long-only or composed of assets that are outside of the considered universe. Indeed, as we do not have
access to their compositions, we cannot guarantee that they are invested solely in the MSCI USA selection.

Finally, we refer to the Appendix for some additional illustrations of the theoretical results of this paper
that are based on this dataset of funds.

6 Conclusion and Perspectives

As an alternative to portfolio weights, we introduced the equivalent representation offered by ρ(w), the vector
of correlations of a portfolio to all the assets of an investment universe. This new representation naturally
leads to the notion of ρ-presentative portfolio - such as the ERC, MV and MDP - which allows an investor to
be positively exposed to all assets without necessarily being invested in all of them.

We then complemented this notion by introducing the concept of maximally ρ-presentative portfolio, which
maximizes its aggregated exposure to all assets. The real valued function f that measures the aggregated
exposure of the portfolio is assumed to be symmetric, concave and increasing. We first proved that maximally
ρ-presentative portfolios are long-only using a key lemma: for any portfolio that is not long-only, there always
exists a long-only portfolio that is more correlated to all assets. A characterization of this new class of portfolios
is then provided: its members are the long-only portfolios whose exposures form a non-increasing function of
their volatility weighted weights. Well known members include the EVW, the ERC and MDPs that can be
constrained with maximum weights.
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As we have seen, the functions f provide a fairly general trade-off between the average, the dispersion and
possibly higher moments of the exposures of a portfolio. Using Schur concave and increasing functions offers
an avenue for further research to generalize the classic Mean-Variance approach to portfolio construction.

Having tackled the no-short sales constraints, we studied the impact of adding maximum weight constraints
to the MDP and MV. The results provided in this paper extend the analytical results of Jagannathan and
Ma (2003), as their impact on the original objective is made explicit and known a priori. Furthermore, in a
context where the covariance matrix has to be estimated, this yields a plain interpretation of the impact of
these constraints on the objective: reducing its estimation error.

We leave for further research the formal study of the biases and estimation variance reduction induced by
the addition of constraints on the MDP and MV. It should be noted that even in a setting where returns are
Gaussian, the problem is challenging as it depends on the order statistics of ρΣ̂(w

∗(Σ̂)).
On another topic, many of the arguments in this paper (KKT, ball compactness, continuity of convex

functions, etc.) rely on the fact that the analysis is performed in a finite-dimensional setting. It would be
interesting to extend these results to a setting where there is a continuum of assets. In particular, we wonder
what the set of maximally ρ-presentative portfolios would be in this case.

Also, the characterization of these rare portfolios that is at the core of this paper satisfies a purely algebraic
property that deserves a more thorough analysis. Moreover, this problem seems to share connection with for
instance task scheduling problems where the idle time is minimized under all permutations of the tasks.

Finally, our results are general as they only rely on the positivity of the correlation matrix and provide
a unifying framework that encompasses many well-known and possibly constrained portfolios. Furthermore,
beyond their financial implications, they may be useful in other fields where correlations are used to measure
interactions.

Appendix

Proof of Proposition 2.5

Proof. The function ϕ is well defined on Π+ as ⟨w, σ⟩ > 0 over this set, the same goes for ϕ−1, and it is easy
to check that ϕ ◦ ϕ−1 = ϕ−1 ◦ ϕ = I, and as a result that ⟨w, σ⟩ ⟨x,1⊘ σ⟩ = 1. Note that in the definition
of ϕ, we simply need that the considered portfolios are not orthogonal to σ which, here, is implied by Σ ≻ 0.
Recalling that D (σ) is the diagonal matrix with σ on the diagonal, one has Σ = D(σ)CD(σ). Furthermore
∀w ∈ Π+, x = ϕ (w) = ⟨w, σ⟩−1D(σ)w, so D (σ)w = ⟨x,1⊘ σ⟩−1x. Now, ∀w1, w2 ∈ Π+,

σ2
Σ (w1) = ⟨Σw1, w1⟩ = ⟨CD(σ)w1, D(σ)w1⟩ = ⟨x1,1⊘ σ⟩−2 ⟨Cx1, x1⟩ , with ⟨x1,1⊘ σ⟩ > 0,

DRΣ (w1) =
⟨w1, σ⟩
σΣ (w1)

=
⟨x1,1⊘ σ⟩
⟨x1,1⊘ σ⟩

1

σC (x1)
≥ 1 as σC (x1) ≤ 1 since x1 ∈ Π+,

ϱΣ(w1, w2) =
⟨w1,Σw2⟩

σΣ(w1)σΣ(w2)
=

⟨x1,1⊘ σ⟩ ⟨x2,1⊘ σ⟩
σC(x1)σC(x2)

⟨D(σ)w1, CD(σ)w2⟩ = ϱC(x1, x2).

Lastly, as ϕ(ei) = ei, the last identity implies that ρΣ (w1) = ρC (x1).

Generalization of The Composition Formula in Proposition 2.4

Proposition. If we have m > 1 portfolios wi ∈ Π that we arrange in columns in a n×m matrix W a θ ∈ Rm

with θ ≽ 0 and ⟨θ,1⟩ = 1, then

ρ(Wθ) = d(Wθ)ρ(W )Φσ(wi)i
(θ),

where

(i) d(Wθ) = ⟨θ,[σ(wi)]i⟩
σ(Wθ) ∈ [1,+∞),

(ii) ρ(W ) is the n×m matrix whose columns are the ρ(wi),

(iii) Φσ(wi)i
(θ) =

θ⊙(σ(wi)i)
⟨θ,(σ(wi)i)⟩ ∈ Rm and has nonnegative components that sum to one.

If we take a k-homogeneous (k > 0) and concave f : Rn → R that we apply to the columns of ρ(W ) we have a
property similar to strict convexity:

f ◦ ρ(Wθ) ≥ d(Wθ)k[f ◦ ρ(W )]Φσ(wi)i
(θ).
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If for any w ∈ Π, θ ∈ Π+, we consider the function f(x) = ⟨x, w
σ(w)⟩, m := n and W = Id, then

ϱ(w, θ) = DR(θ)⟨ρ(w), ϕ(θ)⟩.

The latter proposition generalizes Proposition 2.4 and relates it to the last statement of Lemma 3.4.

Realized RMr

Let us observe that as for the realized DR, the realized RMr of a portfolio (introduced in 4.3.1) may be
measured without knowing its composition as the realized ρ(w)i is simply the correlation between the time
series of w with that of asset i. Therefore, we can perform another numerical experimentsby placing ourselves
in the same setting as 5.3 and considering the same 2278 funds and universe of 464 stocks. For each fund w
and every integer r ≤ 464, one can compute RMr(w) using the sample correlation. In Figure 7, we plot all the
curves r 7→ RMr(w) (that are non-decreasing by definition of RM).

Figure 7: (RMr)r in the USA for 2278 funds from 01/13 - 03/17. The red fund aims to maximize the DR.

For r ≤ 32, the fund maximizing RMr(w) amongst all funds is the MOST DIV TOBAM A/B US EQ-A that targets
the highest investable DR. Observe that r = 32 is the smallest integer such that this fund has not the highest
RMr(w) suggesting that its implicit volatility-adjusted maximum weight constraint is larger than 3.13%.

By Proposition 5.3, we can also plot in Figure 8 the realized DR of all 2278 funds as a function of their
RM32. In addition, we plot in green the constrained MDPs computed over the whole window for all values of
r. These are all forward looking portfolios. Observe that the unconstrained MDP is suboptimal in terms of
RM32 whereas DR(w∗

32) = RM32(w
∗
32)

−1 as proven in Proposition 4.15.
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Figure 8: Realized DR and 1/RM32 in the USA from 01/13 - 03/17 for 2278 funds representing half the total
net assets invested in the USA in Q1/2016. The fund depicted with a blue star is a theoretical and forward
looking constrained MDP with r=32. The green curve depicts all the forward looking constrained MDPs. The
fund in red is the MOST DIV TOBAM A/B US EQ-A that targets the highest investable DR whereas the fund in
black replicates the S&P500 index. The blue dots depict all other funds.
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Similarly, using for instance Proposition 3.5, we isolate in the list below the funds that may not be
long-only. Their names clearly indicate that they are indeed all “short” or “bear” funds:

ADVISORSHARES RANGER EQ BEAR

DIREXION DAILY FINL BEAR 3X

DIREXION DAILY S&P 500 BEAR

DIREXION DLY SM CAP BEAR 3X

GRIZZLY SHORT FUND

PROSH ULTRAPRO SHORT S&P 500

PROSHARES SHORT DOW30

PROSHARES SHORT QQQ

PROSHARES SHORT RUSSELL2000

PROSHARES SHORT S&P500

PROSHARES ULTPRO SHRT DOW30

PROSHARES ULTRAPRO SHORT QQQ

PROSHARES ULTRAPRO SHRT R2K

PROSHARES ULTRASHORT DOW30

PROSHARES ULTRASHORT QQQ

PROSHARES ULTRASHORT R2000

PROSHARES ULTRASHORT S&P500

One could have also used inequality (4.19) or the second assertion of Lemma 4.3 to isolate funds that may not
be long-only and thus not maximally ρ-presentative.
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