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Abstract

Several theoretical studies suggest that crowding in unanchored investment strategies can gen-

erate feedback effects that cause asset prices to deviate substantially from fundamental value.

We demonstrate that consequent runaway overvaluation can explain momentum crashes if in-

vestors hold fixed beliefs regarding peer crowding. However, when investors condition on

prices to rationally infer crowd size they choose nonlinear demands that short circuit crowd-

ing induced feedback, preventing overvaluation and crashes. We use proxies constructed from

13F holdings data and find little evidence of a causal link between crowding and momentum

tail risk. Indeed, we find that unattractive higher return moments are predicted by low rather

than high institutional crowding, consistent with momentum demands rationally considering

feedback effects from crowding.
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1 Introduction

Several studies argue that arbitrageur capital can destabilize prices relative to fundamental value

as a result of incomplete information regarding the market setting. For example, Abreu and Brun-

nermeier (2003) show that if arbitrageurs cannot coordinate an attack, financial bubbles can be

advanced by arbitrageurs themselves, who trade against fundamental value to extrapolate or ‘ride’

the bubble. Stein (2009) shows that uncertainty regarding the crowding of other arbitrageurs run-

ning similar unanchored strategies can lead to overstated beliefs that push prices away from funda-

mental value. When destabilization is sufficiently extreme crash risk is plausibly high, suggesting

a link between crowded trades and higher return moments by way of valuation effects.

A link between crowded trades and higher return moments has been examined in several em-

pirical studies, e.g., Khandani and Lo (2007), Pedersen (2009), and Sias, Turtle, and Zykaj (2017).

However, the focus in these studies is liquidity spirals rather than equilibrium valuation effects,

and the scope is narrow. Lewellen (2011) and Edelen et al. (2016) consider a broader scope of ag-

gregate institutional holdings and changes in holdings (respectively) as they relate to a broad array

of anomaly returns, including momentum. But the focus there is neither higher return moments

nor potential price destabilization from crowding. Other studies have used return characteristics to

link higher moments of momentum returns to crowding, but the link to trading is indirect. Thus,

while there is both a theoretical and empirical basis in the literature for the view that unanticipated

crowding might drive prices beyond fundamental value, leading to momentum tail risk, the hy-

pothesis has not been comprehensively evaluated.1 We directly investigate this hypothesis in the

context of momentum, from both a theoretical and an empirical perspective.

1Several authors (see, e.g., Khandani and Lo, 2007; Pedersen, 2009) have related crowding to the ‘quant melt-
down’ of 2007 by way of a funding / liquidity spiral. These studies do not argue that crowding precipitated the
meltdown; rather, that crowding was a necessary precursor for an isolated funding shock to exacerbate into a systemic
crash. That is, crowding contributes to funding / liquidity risk or fragility; not overvaluation. See also Brunnermeier
and Pedersen (2009). By contrast, the focus in this study does not consider systemic risk but rather focuses on crowd-
ing as a source of valuation errors. For studies relating to return characteristics see Lou and Polk (2013) and Huang
(2015), who both argue that crowding by momentum investors potentially explains negative skewness in momentum
returns.
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We first develop a model similar in spirit to Stein (2009) to demonstrate how different belief

mechanisms employed by momentum investors lead to dramatically different predictions regarding

the impact of crowding on the valuation of (and returns to) momentum portfolios. In addition to

the linear setting considered in Stein’s analysis, we consider more sophisticated demands in which

arbitrageurs condition on the market clearing relation and prior beliefs for crowding and funda-

mental value, forming rational posterior beliefs of crowding. These demands reflect arbitrageurs

who are aware of—and defend against—crowding induced overvaluation and crash risk.

We use simulations under each specification of beliefs to demonstrate the key role that myopic

arbitrageurs (ignorant of the potential for crowding-induced crashes) play in theoretically justifying

unanticipated crowding as a source of crash risk. When arbitrageur beliefs rationally incorporate

inferences of crowding from market-clearing prices, the tail risk in simulated momentum returns is

virtually identical to the case of known crowding (i.e. the primitive return distribution). But when

arbitrageur demands do not condition on the potential adverse effects of peer crowding, simulated

momentum returns exhibit substantial negative skewness and excess kurtosis. We conclude that

unanticipated crowding is a plausible source of momentum tail risk, but only to the extent that

momentum investors are myopic to that possibility in constructing their demands.

The key aspect of the more sophisticated, rational solution is that momentum investors directly

compute the conditional mean for fundamental value at each price for momentum assets (a single

portfolio in our model), rather than (erroneously) presuming that the conditional mean follows a

linear extrapolation rule. Obfuscation from unanticipated crowding generates nonlinear feedback,

which implies a nonlinear error to any linear inference of fundamental value. Rational adjustment

means that conditional expectations nonlinearly relate to price, and therefore so do demands.

Thus, we solve for these demands by computing the conditional mean and variance of fun-

damental value at a given price for the momentum portfolio; repeating over a grid of prices to

interpolate a (nonlinear) solution. Both parameters condition on market clearing and a correct

statement of the joint distribution for the two key primitives: crowding (i.e., the number of peers

following the same investment strategy) and fundamental value. Demands based on these parame-
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ters yield a fixed point on the momentum-portfolio price by construction. Unanticipated crowding

imparts noise into that equilibrium price, but because arbitrageurs form correct conditional expec-

tations at every price, there is no potential for destabilizing feedback: arbitrageurs correctly infer

the potential that unanticipated crowding has influenced the price.

This result is seen in our simulations of market equilibrium under rational versus myopic beliefs

(meaning, complete myopia regarding the possibility of feedback-trading on unanticipated crowd-

ing). Our default calibration yields a (log) momentum rate of return (per evaluation period) with

the following characteristics when modeled under myopic versus rational beliefs, respectively:

• Mean of −2.4% versus 3.0%, and a minimum of −39, 000% versus −2.6%,

• Standard deviation of 174% versus 1.6%,

• Skewness of −151.3 versus 0.4, and kurtosis of 30, 000 versus 3.0,

• Certainty equivalent return of complete loss versus 2.5%.

Thus, unanticipated crowding can lead to virtually unbounded crash risk in strategy returns if

investors following the strategy are myopic to its influence on pricing. But unanticipated crowding

contributes no crash risk in an otherwise identical setting with rational beliefs. (The benchmark

skewness in this setting with known crowding is 0.6; kurtosis 3.1; and standard deviation 1.4%.)

The implied tail risk in the above simulations under myopic beliefs has a devastating effect on

momentum investors. For example, the expected rate of profit for momentum investors maintaining

rational beliefs in the above simulations is 3.44% per evaluation period (e.g., quarter if matched to

the 13F data). This compares favorably to a benchmark expected rate of return (case of momentum

investing with known crowding) of 3.65%. By contrast, under myopic beliefs the expected profit

is virtually certain complete loss due to the high probability of momentum crash.

While the case of myopic beliefs demonstrates how unanticipated crowding can generate mo-

mentum crashes, such beliefs make for an untenable strategy. One alternative is to scale back the

myopia inherent in linear demands by lessening the slope in the linear inference of predictable

returns given price. Stein (2009) models arbitrageurs taking this approach to protecting against
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crash risk. We conduct a similar analysis in our setting using a grid search over a range of assumed

slopes. We find that when momentum investors follow the optimum such strategy, crash risk is

substantially eliminated. However, this approach is inefficient: linearity implies foregoing prof-

itable opportunity when rational inference of crowding is low to moderate, and continued feedback

trading when rational inference of crowding is high. As a result of this inefficiency, the expected

rate of profit from the optimal linear strategy is a relatively modest 0.65%; i.e., capturing only

17% of potential profits of 3.65% in the known-crowding case (versus a 95% effectiveness using

rational beliefs). Moreover, some residual equilibrium crash risk remains.

In summary, if investors are myopic to crowd risk then their demands generate the very risk

they ignore: unanticipated crowding in the momentum strategy generates momentum crashes.

Conversely, if investors’ demands rationally account for the potential impact of unanticipated

crowding on prices, then those self-protecting demands attenuate the influence of unanticipated

crowding to the point that the equilibrium distribution of momentum returns precludes crashes. In

short, theoretical predictions of crowding-induced momentum crashes do not derive from crowd-

ing uncertainty per se, but rather myopic consideration of that crowding uncertainty. We don’t take

a stand on the extent of crowding myopia in practice, instead treating it as an empirical matter.

Our empirical analysis uses 13F data to construct proxies for momentum crowding by directly

linking changes in institutional holdings to the now-standard 12 - 1 momentum prescription of,

i.e., Jegadeesh and Titman (1993); and to past returns generally as in the analysis of mutual fund

momentum trading in Grinblatt et al. (1995). Our measures incorporate three innovations. First,

we incorporate persistence to better distinguish investment strategy from spurious trade-return cor-

relations. Second, we consider both anticipated and unanticipated crowding measures. Third, we

distinguish between crowding by peer institutions (number of momentum investors)—which we

argue is the dominant source of uncertainty—versus trading intensity (capital allocated to momen-

tum) which is arguably relatively homogeneous across investors. To our knowledge, this represents

the most direct and comprehensive construction of proxies for institutional momentum investing

in the literature. Several other studies (most notably Lou and Polk, 2013) use returns-based ap-
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proaches to infer crowding. We provide evidence on the efficacy of this procedure relative to direct

inference from trading behavior.

We find strong evidence that crowding predicts negatively mean momentum returns, which is

consistent with theoretical prediction under all belief specifications. However, we find little in

the way of reliable evidence that crowding positively predicts tail risk. To be meaningful, tail

risk implies negative skewness, elevated volatility, and excess kurtosis; not just negative skewness.

We find that our proxies for momentum crowding generally relate negatively to all three higher

moments,2 often with statistical reliability. This surprising result is not consistent with a causal

role for crowding in momentum crashes, but it is consistent with rational momentum investors

optimizing their demands to account for time-varying toxicity in market conditions. We provide

a broad range of supporting evidence for this assessment of arbitrageur beliefs, based on nuanced

differences in the proxies. We conclude that the evidence best supports the theoretical analysis that

presumes rational beliefs. In that theoretical setting, crowding does not play a material role for

higher moments of momentum returns.

There is much related literature on the subject. We provide a detailed survey in Appendix A.

Section 2 develops the model and Section 3 develops and analyzes its result using a simulation

approach. Section 4 presents the empirical analyses and Section 5 concludes the study.

2 Model

Section 2.1 lays out the assumptions and setting of the model and Section 2.2 develops four solu-

tions to the equilibrium, differing by how momentum investors form their beliefs.

2To be precise, crowding is associated with lower volatility, less excess kurtosis, and less negative skewness.
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2.1 Setting

To save space we work directly with the momentum portfolio, which is developed from individual

stocks in Appendix B. The key components in that development are as follows. There are two

periods: the momentum portfolio formation period and the evaluation period in which momentum

returns are realized. The formation period begins with all investors holding the market portfolio.

An informed subset of investors observe a common signal δ of differential fundamental value for

a random subset of winner and loser stocks. The realized differential return is d = δ + ε where

ε is a mean-zero disturbance with variance σ2
ε . As informed investors trade on their signal in the

formation period, they identify the momentum portfolio.

In practice, momentum investors infer informed traders’ signal by observing strictly past re-

turns; generally a six to twelve month period. We abstract from this literal chronology by modeling

a call auction on the portfolio formation date (end of formation period) in which all agents con-

dition demands on the market-clearing price. Payoffs are realized after the market clears, which

forms the evaluation period. Let f denote the formation-period return on winner minus loser

stocks.3 We refer to f as the price of the momentum portfolio. The realized (evaluation period)

momentum return is

d − f = m + ε, (1)

where the momentum return m = δ − f is the expected return conditional on all available infor-

mation as of the portfolio formation date, integrating out the disturbance ε. Most of our analysis

pertains to m, as ex post residuals are not relevant to empirical predictions.

The price of the momentum portfolio is determined by balancing the demands of three investor

groups. Informed investors hold an initial capital stock KI . They observe δ and hold beliefs

EI
[
m + ε |δ, f

]
= δ − f , VarI

[
m + ε |δ, f

]
= σ2

ε . (2)

3More specifically, the mean of the log of the call-auction price minus the initial price for winner stocks, minus
the same calculation for loser stocks. Because each stock’s private signal is +/- δ, the return on each stock is the same
except possibly sign.
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Momentum investors hold capital stock KM. They do not observe δ but they attempt to infer it from

the market clearing price, f . Let δE = EM
[
δ | f

]
and δV = VarM

[
δ | f

]
denote their expectations

(further discussed in Section 2.2)

EM
[
m + ε | f

]
= δE − f , VarM

[
m + ε | f

]
= δV + σ2

ε . (3)

Counterparty investors hold capital stock KC. They trade counter to the price-pressure of informed

and momentum investors, fixating beliefs on historical public information with ECd = 0. Thus:

EC
[
m + ε | f

]
= − f , VarC

[
m + ε | f

]
= σ2

δ + σ2
ε . (4)

Counterparty investors obviously lose in expectation; their role is to clear the market without

burdening the analysis with a noise-trader framework. All investors hold power utility preferences

with relative risk aversion γ, maximizing4

E [u (K)] = E
[

K1−γ

1 − γ

]
(5)

on the portfolio-formation date, where K is wealth following the evaluation period. We use the

second-order approximation of Campbell and Viceira (2002, Internet Appendix) to derive

Demand =
Etype [m + ε]

γVartype [m + ε]
Ktype, (6)

where Ktype is the beginning of period capital of a given investor type. Details are in Appendix

C. Summing across the three investor types and equating to zero supply gives the market clearing

condition:

f =
1
D

δkI +
δE

1 + δV

σ2
ε

kM

 , (7)

4We assume that γ > 1 without loss of generality throughout the paper.
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where D =
(
1 − δV

σ2
ε+δ

V kM

)
and ktype = Ktype/

(
σ2
ε

σ2
ε+σ

2
δ

KC + KI + KM

)
indicates the fraction of capital

from each investor type (with a nuisance adjustment multiplying counterparty capital). Crowding

in the momentum strategy is captured by kM, which is assumed random (likewise, kI , kC).5

2.2 Solutions

We consider four solutions to Eq. (7) that differ in the specification of momentum-investor beliefs.

In the base case the capital allocated to momentum is known, so momentum investors correctly

formulate linear beliefs for m| f . In the second case crowding is stochastic but momentum investors

ignore this fact and treat it as fixed at the expected value, again applying linear beliefs to m| f . This

is the case of extreme myopia where endogenous investment decisions are not recognized as a

source of noise in market prices. In the third case momentum investors maintain linearity in their

beliefs, but they choose the slope (rather than their demands in each market occurrence) based on

the average gains from predictable returns and the average loss from feedback trading on capital

uncertainty. In the fourth case momentum investors use the common prior probability distributions

for δ, kM, and kI to form a conditional distribution for m| f that correctly assimilates equilibrium

crowding effects.

2.2.1 Known crowding

First consider the case of known kM and kI . If momentum investors conjecture a linear equilibrium

f = λδ (8)

with λ ≡ kI + kM, then beliefs δE = λ−1 f and δV = 0 lead to a self-fulfilling linear solution to

Eq. (7).6 That is, Eq. (8) gives the resulting dependence of price on δ, and λ−1 f and 0 are the

5Note that crowding uncertainty is not the same as aggregate demand for the momentum portfolio. This distinction
is important for the empirical section. Crowding uncertainty derives from not knowing how many others are following
the same strategy; how they trade conditional on that strategy is common knowledge since they all solve the same
problem).

6Note that Eq. (8) implies that f reveals δ.
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conditional expectation and variance, respectively.

2.2.2 Myopic beliefs (crowding uncertainty that momentum investors ignore)

We now assume that capital proportions are stochastic, but momentum investors treat both as con-

stants equal to their expected values. Hence they form beliefs using

f = λEδ, where λE ≡ EkM + EkI . (9)

We refer to this belief mechanism as ‘myopic beliefs,’ under which the market clears at the price

f = λE

(
kI

λE − kM

)
δ = λE

(
kI

EkI − (kM − EkM)

)
δ. (10)

Eq. (10) identifies the problem with failing to account for capital uncertainty in forming mo-

mentum demands. While the bracketed multiplier in Eq. (10) equals one when crowding in the

momentum strategy happens to equal its expected value, confirming the Eq. (9) conjecture, it

generally does not, contributing a stochastic element to the realized coefficient on δ. This has

important implications for the distribution of momentum returns.

This stochastic multiplier (the bracketed term in Eq. (10)) grows without bound as unantic-

ipated crowding kM − EkM approaches EkI . Consider the extreme case of kM − EkM = EkI , or

kM = λE. Recalling that δE = λ−1
E f and δV = 0 under myopic beliefs, Eq. (7) becomes

f (1 − kM) − δkI = f (1 − λE)
kM

λE
, (11)

where the left-hand side is the supply of the momentum portfolio to momentum investors and the

right-hand side is their demand. Thus kM = λE implies that demand exceeds supply at all values

of f . Momentum investors apply unrelenting upward pressure on the price of the momentum

portfolio, never realizing that they are mostly—and eventually entirely7—feedback trading on each

7There is an equilibrium at a finite negative value for f when kM > λE . This corresponds to a reversal of identifi-

9



others’ same mistake. This potentially drives the market valuation of winners and losers far beyond

their fundamental value, leading to a momentum crash. At less extreme values kM − EkM < EkI

kurtosis and negative skewness in momentum returns can nevertheless be quite large.

Result 1 If momentum investors are myopic to the possibility that unanticipated crowding has

contributed to the formation-period valuation of the momentum portfolio, as expressed with beliefs

Eq. (9), then momentum returns can have arbitrarily large tail risk in the form of high variance,

negative skewness, and excess kurtosis.

2.2.3 Optimal linear beliefs

Momentum investors can avoid—or at least mitigate—the destabilizing effects of capital uncer-

tainty by lessening the slope coefficient λ−1 in the δE = λ−1 f expression of linear beliefs. This

gives a linear equilibrium similar to the left-side expression in Eq. (10), with λ replacing λE. A

larger λ (greater attenuation of beliefs), lowers the possibility that kM is large enough to cause the

denominator to approach (or fall below) zero, therefore lowering variance, skewness, and kurtosis

in momentum returns. However, from Eq. (6), a larger λ also means more moderate momentum

investing and therefore lower profits in non-crash periods. We do not consider an analytical solu-

tion for the optimum scaling back of linear demands but note that the optimum presumably implies

some sacrifice of profit and some residual exposure to higher moments. We determine the optimum

with a grid search using the common market setting considered later in the analysis, and find both

outcomes to be the case.

2.2.4 Rational beliefs

The conditional probability distribution that investors use to form δE and δV at a given value of

f should produce demands that clear the market at the price f . Here we outline the solution to

cation on winners and losers, putting momentum investors on the wrong side of the trade (heavily buying losers and
selling winners, with informed traders taking the other side to enormous profit). We consider this case in Appendix D
but note here that it too predicts extreme negative momentum returns.
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those demands. The random variables in the system are δ, kI , and kM. We write their joint density

as g (δ) h (kM, kI), noting that δ is independent of kM and kI but that the k’s themselves are clearly

dependent. Momentum investors seek to compute δE and δV given this distribution and observation

of f :

δE =

∫ ∞

0
δp1 (δ| f ) dδ =

∫ ∞

0
δ

p3 (δ, f )
p2 ( f )

dδ,

δV =

∫ ∞

0

(
δ − δE

)2 p3 (δ, f )
p2 ( f )

dδ, (12)

where numerical subscripts serve to distinguish the functional form of each probability density

function (pdf). To solve for these pdfs we replace the primitive random variable kI with the ob-

servable random variable f using Eq. (7). This exchange of variables yields a joint pdf for the

market clear price f equal to

p4 (δ, kM, f ) = g (δ) h

kM,
1
δ

 f D −
δE

1 + δV

σ2
d

kM


 D
δ
, (13)

where D is as in Eq. (7) (see Appendix E). Integrating kM, and then δ, out of Eq. (13) gives

p3 (δ, f ) =
g (δ)
δ

∫ 1

0
h

kM,
1
δ

 f D −
δE

1 + δV

σ2
d

kM


 DdkM,

p2 ( f ) =

∫ ∞

0

g (δ)
δ

∫ 1

0
h

kM,
1
δ

 f D −
δE

1 + δV

σ2
d

kM


 DdkMdδ. (14)

The expressions for beliefs, conditional on f , are

δE =

∫ ∞
0

g (δ)
∫ 1

0
h

kM,
1
δ

 f D − δE

1+ δV

σ2
d

kM

 DdkMdδ

∫ ∞
0
δ−1g (δ)

∫ 1

0
h

kM,
1
δ

 f D − δE

1+ δV

σ2
d

kM

 DdkMdδ

, (15a)
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and

δV =

∫ ∞
0

(δ−δE)2

δ
g (δ)

∫ 1

0
h

kM,
1
δ

 f D − δE

1+ δV

σ2
d

kM

 DdkMdδ

∫ ∞
0
δ−1g (δ)

∫ 1

0
h

kM,
1
δ

 f D − δE

1+ δV

σ2
d

kM

 DdkMdδ

. (15b)

In the simulations, we solve for δE and δV by conditioning on a given value of f ,8 repeating on

a fine grid over the plausible range of values for f . This yields a discrete approximation to the

continuous belief mappings f → δE and f → δV . We then approximate the mapping at arbitrary

values of f by interpolation.

3 Simulations

In this section we analyze the equilibrium under each specification of beliefs by solving Eq. (7) un-

der each of 100,000 random draws for the triple δ, kM and kI . We then use those 100,000 equilibria

to evaluate momentum return moments and consistency of beliefs. The crowding variables kI and

kM (and the derived kC) follow a symmetric Dirichlet distribution, Dir(α), which provides a natural

dependence among capital allocations as fractions of a whole with equal expected value 1/3. We

use concentration parameter α = 3 to reflect a relatively diffuse prior belief for crowding, subject

to the desideratum of vanishing probability that ktype = 0 or 1.9 We use a lognormal distribution

for δ with µ = −2.405 and σ = 0.125.10 Finally, ε is drawn from a zero-mean normal distribution

with σε = 0.125.

Table 1 provides descriptive statistics of momentum returns and Figure 1 provides plots of

beliefs and conditional mean returns. Each of the four columns of plots in Figure 1 correspond to

8In particular, we use Matlab’s FSolve function to jointly locate the roots of the LHS minus RHS for Eqs. (15a)
and (15b) at a given f .

9In an internet appendix we find qualitatively similar predictions under various permutations on α and other
characteristics of the presumed setting, such as a uniform distribution for δ.

10These values imply an average δ of 9.1% with standard deviation of 1.14%. The log-normal distribution has the
advantage that the differential dividend is limited to positive values, and this distributional assumption is consistent
with the evidence in Andersen et al. (2001).
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a different assumption of beliefs. To construct each plot, simulation trials are ranked into 100 bins

according to the conditioning variable (horizontal axis). Averages are then computed within each

bin to approximate the conditional expectation of the variable indicated on the vertical axis.

[Insert Figure 1 and Table 1 near here]

Known crowding. In the simplest specification (Panel A) kM and kI are random but directly

observed by momentum investors prior to trading. Plot A.1 of Figure 1 shows the mean for funda-

mental value δ as a function of beliefs δE. It is an identity, as expected since momentum investors

effectively observe δ via f . From the third row of plots, A.3 depicts m decreasing with realized

crowding (kM − EkM) as competition bids away expected return. The relation is linear, since there

is no unanticipated crowding (or feedback effects, or momentum crashes). This can also be seen

in Table 1, Panel A where standard deviation and excess kurtosis are low, and skewness is slightly

positive. The values provide a benchmark for considering the more realistic cases in Panels B

through D.

Myopic beliefs Plot B.1 of Figure 1 indicates a strongly concave relation between beliefs δE

and fundamental value δ, with investors substantially overstating value at the highest levels of be-

liefs. These errant beliefs derive from a failure to recognize that the source of the high f that they

are linearly extrapolating is likely feedback from unanticipated crowding. The potential for a catas-

trophic outcome from this myopia is demonstrated in Plot B.3, where momentum crashes involve

loss rates in excess of -300%.11 Even more extreme crashes (on the order of -400%) are identi-

fied by conditioning on investors’ beliefs δE as in Plot B.2. From Panel B of Table 1, momentum

returns exhibit substantial volatility and extreme negative skewness and excess kurtosis. These

crashes imply a certainty equivalent utility of assured total loss. In short, these results make it

clear that feedback effects from unanticipated crowding can explain momentum crashes, provided

investors are sufficiently myopic in their beliefs.

11Notice that the loss in the highest kM − EkM bin is smaller than in the second highest bin because momentum
returns are here determined by the − f equilibrium described in Appendix D.
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Optimal linear beliefs. In this setting we presume that investors temper their myopia but

continue to form beliefs as a linear extrapolation of past returns, rather than as a proper conditional

expectation of value (as in the next and final case). We let λ range from the known-capital case of

2/3 up to 1 (λ = 1 implies momentum demands are 0 at all f ), and then select the value with the

highest average realized utility, from Eq. (5). The presumed setting yields λ−1 = 1.12.

The first-order effect of optimally choosing λ is is to eliminate the run-away overstatement

of beliefs seen with myopic beliefs. From Plot C.1 of Figure 1, fundamental value δ now at

least monotonically increases with beliefs δE. However, the relation is nowhere near the identity

required under rationality. Investors still overstate fundamental value when beliefs are high (fueling

tail risk), and they now understate value when beliefs are low to moderate (sacrificing profit).

Momentum returns are predictably negative with extreme beliefs, as seen in Plot C.2, and some

negative skewness and excess kurtosis remains in Panel C of Table 1. Volatility of returns is higher

than in the base (observed kM) case, and there are rare cases of negative tail events severe enough

to match momentum crashes observed in practice. Nevertheless, as seen in Plots C.2 and C.3,

momentum returns are now largely free of crash risk and from Table 1 the higher moments of

momentum returns are greatly attenuated relative to the previous case.

Note that equilibrium momentum returns are high (4.2% versus 3.0% in the base case), yet the

expected profit to momentum investors is much lower at 0.65% versus 3.65%, respectively. Thus,

protecting against crowding risk while adhering to a linear constraint comes at substantial cost. In

trading off against this high cost, optimal linear beliefs leave some crash risk on the table. As we

will see in the case of rational beliefs, this sacrifice of profit and the associated residual crash risk

is entirely unnecessary. Investors can do a much better job of protecting against crowding risks,

while at the same time garnering profits that almost match the base case of crowding certainty.

Rational beliefs. On virtually all counts market equilibrium with rational beliefs (and crowd-

ing uncertainty) behaves quite similar to the case of no crowding uncertainty. There are no aberrant

higher moments, and all statistics relating to the first moment (mean returns, certainty equivalent

returns, and profit) essentially match the base case.
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First note the efficiency of beliefs as indicated in Plot D.1 of Figure 1: the mapping from beliefs

δE to the actual mean δ is an identity as required under rationality. Likewise, Plot D.3 indicates an

approximate linear relation between unanticipated momentum capital and momentum returns with

no evidence of feedback from unanticipated crowding. From Plot D.2, expected profit is positive at

all levels of belief, and remains so even in the most extreme realizations of unanticipated crowding

(top bin of Plot D.3). Second, note that equilibrium momentum returns exhibit no negative skew-

ness or excess kurtosis (Table 1, Panel D) and little incremental volatility. The worst-case return

is -2.55%: crashes are not predicted under any of the 100,000 simulated market conditions (δ, kI ,

and kM).12 Third, note that profitability of the momentum strategy with unanticipated crowding

(and rational beliefs) is nearly equal to the setting with known crowding, and five times larger than

in the case of optimal linear beliefs. Certainty equivalent return differences between known and

unanticipated crowding are less than 0.1% for all values of risk aversion (γ) considered.

We conclude that unanticipated crowding does not provide a sufficient theoretical basis for

momentum crashes; arbitrageurs must also be myopic to the possibility that they are feedback

trading on their own price pressure. We summarize this as

Result 2 Crowding induced crash risk in momentum returns is eliminated if momentum investors

rationally incorporate tail risk into their conditional beliefs of fundamental value, E (δ| f ). How-

ever, momentum returns remain negatively related to unanticipated momentum capital kM − EkM

under all specifications of beliefs.

4 Empirical section

We base our empirical analysis on quarterly holdings from the Thomson Reuters Institutional 13F

database starting in Q1 of 1980 and ending in Q3 of 2015. Stock data are from CRSP using price

and share adjustment factors, restricted to CRSP share code 10 and 11 and a listing on AMEX,
12Recall that each simulation solves for the expected momentum return under a given market state (fundamentals

and crowding), integrating out the noise term ε. It is in this sense that we refer to a predicted return under a given state.
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NYSE or Nasdaq. The momentum return at time t is defined as the return of winners (stocks in the

top 10% using NYSE cutoffs, sorting on returns from months t − 12 to t − 2) minus the return of

losers (stocks in the bottom 10% similarly constructed). Returns are value-weighted within each

decile, taken from Kenneth French’s online data library.

4.1 Crowding proxies

To construct our crowding measures we first score the trading of institution i in quarter q based on

alignment with a momentum strategy. Second, we label i a momentum institution in quarter q if

recent scoring is consistently high. Third, we use the fraction of momentum institutions in quarter

q as our measure of crowd size at that time, i.e., kM.

Step one. Define two momentum scores; both relate to an inner product of change in portfolio

weight and past returns. The first is taken from Grinblatt et al. (1995) and denoted

GTWscorei,q =

J∑
j=1

(
ωi, j,q − ωi, j,q−1

)
r j,q−1, (16)

where ω is a portfolio weight and r j,q is a quarterly stock return. Prior quarter prices are used in

computing weight changes13 to capture only active trading:

ωi, j,q − ωi, j,q−1 =
wi, j,qP j,q−1∑J
j=1 wi, j,qP j,q−1

−
wi, j,q−1P j,q−1∑J
j=1 wi, j,q−1P j,q−1

,

where w indicates shares held. The strategy implicit in GTWscore is a departure from the now-

13Note that 13F filings do not report short positions, hence weights apply only to long positions. However, used as
an overlay to a broadly diversified investment strategy momentum investing implies overweighting winner stocks and
underweighting loser stocks. Thus, changes in long portfolio weight should track sensitivity to both winner and loser
stocks.
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standard 12 - 1 momentum strategy, e.g., Jegadeesh and Titman (1993). Thus, we also define

BEKscorei,q =

J∑
j=1

(
ωi, j,q − ωi, j,q−1

)
ι j,q (17)

using an indicator for past 12 - 1 return decile, where ι j,q = 0 unless stock j is a top-decile winner

(= 1) or bottom-decile loser (= −1). This implies equal weighting of 20% of all stocks. By

contrast, GTWscore implies continuous weighting of all stocks.

Step two. A single quarter of trading alignment does not make for a momentum strategy:

a random portfolio change has a 50% chance of being so labeled. Moreover, to the extent that

institutional trading impacts prices on the one hand, and is persistent on the other, both GTWs-

core and BEKscore are upward biased (with reverse causality giving the appearance of feedback

trading even if trade motive is exogenous). This distinction is critical since there are no crowding-

induced crashes sans feedback trading. Thus, we indicate (i, q) to be a momentum investor if

1∑3
l=0 1GTWscorei,q−l>0=4 = 1 (or BEK), i.e., a positive score in each of quarters q − 3 through q.

Step three. Aggregate by quarter to form a crowding measure. Note that each institution

playing the momentum game optimizes a similar problem, conditioning on similar information

(past prices). Thus, demand intensity is not unanticipated; what is unanticipated is how many

institutions are playing the game. This implies that crowding uncertainty primarily relates to the

count of momentum-investing institutions.14 Hence we define

GTW_4qtrq =
1

Nq

Nq∑
i=1

1∑3
l=0 1GTWscorei,q−l =4, GTW_1qtrq =

1
Nq

Nq∑
i=1

1GTWscorei,q>0, (18)

BEK_4qtrq =
1

Nq

Nq∑
i=1

1∑3
l=0 1BEKscorei,q−l =4, BEK_1qtrq =

1
Nq

Nq∑
i=1

1BEKscorei,q>0, (19)

14More formally, from Eg. (6) using Mq as the count of momentum institutions, write aggregate momentum

demands as
∑Mq

i=1 Demandi,q =
∑Mq

i=1

(
EM,q[m+ε]

γVarM,q[m+ε] KM,q

)
Ki,q

KM,q
= φqMq, where KM,q is the average institution’s capital and

φq is the representative momentum investors’ optimal demand intensity. If the latter is common knowledge, then Mq

is the right proxy.
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where Nq is the total count of institutions in quarter q. Our focus is the 4qtr measures on the left.

We include the one-quarter versions listed on the right for completeness. Note that count is scaled

by number of institutions to make the measures comparable across quarters.

We also consider two capital based proxies for crowding to incorporate trading intensity:

BEKcap_4qtrq =

∑Nq

i=1 Capi,q1∑3
l=0 1BEKi,q−l>0=4∑Nq

i=1 Ki,q

, BEKcap_1qtrq =

∑Nq

i=1 Capi,q1BEKi,q>0∑Nq

i=1 Ki,q

, (20)

where Capi,q =
∑J

j=1 P j,qwi, j,qι j,q and Ki,q =
∑J

j=1 P j,qwi, j,q. In a multivariate setting, the BEKcap

measures identify variation in momentum trading intensity across quarters. Finally, we consider

both levels (referenced as Crowdq-1) and changes (referenced as ∆Crowdq) to capture anticipated

and unanticipated components. We use a GARCH(1,1) specification of expected volatility in the

crowding time series to capture crowding uncertainty (referenced as σ̂Crowd).

In short, the permutations are: GTW versus BEK formulations; count versus capital metrics;

4qtr versus 1qtr indicators for persistence in strategy; and levels versus changes. Our primary

variable of interest is changes using 4qtr persistence on the BEK strategy with a count metric.

4.2 Descriptive statistics

Table 2 provides summary statistics for the 13F data (in Panel A); for the proxies for momentum

investing (in Panel B); and for momentum returns (in Panel C). In Panel A we label an institution

a consistent momentum investor if they follow a momentum strategy in two-thirds of the quarters

for which we have the necessary data. We find that 23% (1,435/6,360) of institutions are consistent

momentum investors. By contrast, Grinblatt et al. (1995) find that 59% of mutual funds are mo-

mentum investors, defined as having a positive average GTWscore.15 Momentum institutions have

higher turnover (26% compared to 20%); manage more assets (2.27 billion versus 1.28 billion);

15Grinblatt et al. (1995) also define momentum investors using returns and trading over the same quarter. Using
this definition, they find that 77% of mutual funds are momentum investors.
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and hold more stocks (204 stocks on average versus 125) than their counterparts.

[Insert Table 2 near here]

From Table 2, Panel B, approximately 50% of institutional investors are classified as momen-

tum investors in a given quarter using either BEK_1qtr or GTW_1qtr. The more relevant 4qtr

measures average 12.5% and 10.8%, respectively, compared to a 0.54 = 6.25% random-trading

null. Most crowding variables show strong persistence using the coefficient in an AR(1) regres-

sion. Given this (and below) evidence of persistence, we estimate the volatility of crowding using

residuals from an AR(1) regression with a GARCH(1,1) specification (Bollerslev, 1986).

Table 2, Panel C summarizes regressions of momentum returns using the Fama-French 3 factor

model (abbreviated FF3) and a dynamic version of the same model (dynamic FF3).16 The latter is

motivated by the evidence in Grundy and Martin (2001) that the momentum portfolio has strongly

time-varying risk exposure. In the dynamic FF3 specification we include regressors with an in-

teraction indicator variable for a positive prior-year factor return. In unreported results we find

that momentum has substantial crash risk in our sample (high excess kurtosis with pronounced

left-skewness), which includes the momentum crash of March-May 2009.

Table 3, Panel A considers the persistence of the four momentum classifications in more de-

tail. The probability of maintaining the current classification in the following quarter is 71% for

both BEK_4qtr and GTW_4qtr. The four quarter ahead probabilities average 33% for these mea-

sures, or about three times their respective unconditional probabilities (listed under column ‘All

q’). Table 3, Panel B relates each of the four measures to contemporaneous and predictive values

for BEK_1qtr; the idea being that BEK_1qtr tracks realized momentum trading. The probability

of a positive BEK_1qtr four quarters ahead is about 68% for the 4qtr measures, suggesting they

provide meaningful predictors of momentum trading.

16We often make reference to FF3 or dynamic FF3 models or residuals. In fact, in return regressions the dependent
variable is the momentum factor return with FF3 or dynamic FF3 factors are included as controls. For the crash and
volatility analyses residuals from a FF3 or dynamic FF3 models are used.
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[Insert Table 3 near here]

Table 3 also indicates the rapidly changing composition of the momentum portfolio. Winners

have a 56% chance of remaining winners the following quarter, but at four quarters the likelihood

is only 16%, which is actually less than the 23% chance of becoming a loser. Persistence is higher

with losers, with 31% retaining that classification after four quarters.

4.3 Crowding and conditional expected returns on the momentum factor

Table 4 shows the results of predictive regressions of momentum returns on the various crowding

measures. All momentum trading measures are lagged (in this and subsequent tables) to ensure

that there is no overlap between the measurement of the independent variable and the momentum

return. For example, we use the change in BEK_1qtrq to predict momentum returns in quarter

q + 1. As a control we include lagged realized volatility of momentum computed from squared

daily momentum returns in the previous quarter. Barroso and Santa-Clara (2015) show that this

strongly predicts (negatively) momentum returns.17 Because computing the regressors requires up

to six quarters of data, the regression sample begins in Q3 1981 and ends in Q4 2015.

[Insert Table 4 near here]

We find that both anticipated crowding (proxied with Crowdq-1) and unanticipated crowding

(proxied with ∆Crowdq) negatively relate to the mean of momentum returns. The relation is gener-

ally significant with the 4qtr proxies (Panel A) but not so with the noisier 1qtr proxies (Panel B).18

These results are as predicted. We generally do not see any reliable relation with BEKcap proxies,

where the coefficient estimate is often (insignificantly) positive.

The difference between the two proxies (count-based vs. Cap) is the intensity of the momen-

tum bet. Hence the pattern of results in Table 4 suggests that the intensity of momentum investing

17In unreported results we also controlled for the bear market states proposed by Cooper et al. (2004). Using this
control in our sample period did not change our results.

18Unless otherwise noted the significance levels discussed refer to two-tailed tests even when the model provides a
clear prediction for the sign of the coefficient.
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positively relates to future returns, whereas the number of competitors (i.e., crowding) negatively

relates to future returns. This is consistent with rational beliefs, where demand intensity recoils

from crowding-induced feedback with its associated lower returns. It is inconsistent with myopic

beliefs, where crowding-induced feedback generates a component of demand intensity that nega-

tively relates to returns. This is the first of several pieces of evidence we provide that supports the

rational beliefs hypothesis over the myopic beliefs alternative.

Finally, from Table 4 the anticipated volatility of crowding, σ̂Crowd, is positively related to the

expected returns at the 1% level in some specifications, but the relation is generally insignificantly

positive. A positive relation implies that uncertainty in the number of competing momentum in-

vestors inhibits participation in the strategy, lowering momentum demand and therefore raising

evaluation-period returns. But that inference is cloudy at best. In our later consideration of the

second moment (volatility, in Table 7) we find evidence (again cloudy) consistent with this story.

4.4 Crowding and negative tail events in momentum returns

The focus of the study is the relevance of unanticipated crowding for the pronounced left tail in

the distribution of momentum returns. We assess this link in Table 5 with a probit analysis of tail

probabilities using 4qtr proxies and both raw and dynamic FF3 returns. First, note that the mean

dependencies documented in Table 4 suggests that crowding shifts the distribution of momentum

returns leftward. Even if crowding had no effect on higher moments, the probit analysis might

indicate tail risk. We therefore use a bivariate probit analysis that considers the shift in probabilities

for both the left and right tail, and then report on the difference to identify crash-like tendencies.

The null hypothesis is that fattening of the left tail is due only to a downward shift in the mean,

rather than an elevation in negative skew.

[Insert Table 5 near here]

The p-values in square brackets from Table 5 provides the Wald test of a difference in left versus

right tail effects. Using BEK proxies we find a statistically reliable positive relation between
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∆Crowdq and 10% left-tail probabilities. This suggests that crowding indeed contributes to tail

risk, but the evidence is weaker with GTW and using 5% tails, perhaps because of small-sample

difficulties. The Wald tests indicate that the impact of crowding on tail risk is largely due to the

shift in mean returns documented in Table 4 rather than increased negative skew. Few p-values are

significant at conventional levels, with the results for σ̂Crowd coming the closest. Several others are

significant at a 20% level but generally the evidence of crowding induced tail risk is very weak. One

might also note that in all cases the strongest signal comes from the count-based BEK proxy. The

Cap versions are never close to relevant. Thus, to the extent that there is any evidence of a relation

between crowding and momentum tail risk it relates to unanticipated number of competitors, not

unanticipated trade intensity.

[Insert Figure 2 near here]

Figure 2 plots the time series of our crowding measures. The measures shown suggest the momen-

tum strategy was indeed crowded during the internet bubble. Piazzesi and Schneider (2009) find

similar evidence of increased trend following behavior during the housing bubble of 2007-2009

and argue that the actions of a small cluster of momentum investors can exert considerable influ-

ence on prices. On the other hand, no striking pattern is discernible before or during the major

momentum crash of 2009. If anything, momentum investing by 13F institutions seems to have

retracted prior to that crash.

4.5 Tail risk

While the notion of tail risk surely involves pronounced left skewness, to be meaningful it must also

be accompanied by high volatility and excess kurtosis.19 With this in mind we examine all three

higher moments of momentum returns in Table 6 by sorting calendar quarters based on our Crowd

proxies. We add sorts based on lagged realized volatility of momentum returns for comparison.

19A large kurtosis combined with left skewness is much more meaningful if volatility is also high. A low volatility
directly reduces the denominator in these quantities inflating their values.
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The evidence in Table 6 does not support crowding as a source of tail risk in momentum returns.

Rather, momentum investors seem somewhat successful in avoiding it. For example, consider the

unanticipated-crowding proxy ∆Crowdq: it is statistically unrelated to subsequent values of each of

the three contributors to tail risk; volatility, skewness, and kurtosis. If anything, the relation is neg-

ative. In particular, using the count-based proxy BEK_4qtr (middle column of results), skewness

is significantly more negative in the bottom (low) tercile of ∆Crowdq (t-statistic 4.1). Likewise,

excess kurtosis is significantly higher in that low tercile. This pattern is more consistent with the

unanticipated component of crowding forecasting—and avoiding—tail risk than causing it. Con-

trast these results with the case of conditioning on lagged volatility in momentum returns. Here, we

see statistically reliable prediction of tail risk in all moments, in the right direction. This evidence

is consistent with Barroso and Santa-Clara (2015) who find that a volatility-managed momentum

strategy has much smaller crash risk than original momentum.

[Insert Table 6 near here]

Table 6 offers important insight. There is tail risk in our sample and it does relate to ex ante

market conditions. However, crowding (particularly unanticipated crowding) does not seem to be

one of them. Indeed, the contrast in Table 6 between the predictability of return volatility and the

predictability of direct measures of crowding (particularly the contrast in direction of predictabil-

ity) strongly suggests that momentum investors form beliefs that incorporate tail risk. Quite likely,

those beliefs derive from return volatility. As in the theory, such rational beliefs prevent unan-

ticipated crowding from itself causing tail risk. The evidence here goes further: high levels of

momentum investing (top tercile) seem to identify a predictably stable environment, much less

self-inflicted tail risk.

We agree with much of the literature that it is tempting to interpret the predictive power of

volatility for momentum returns as indirect evidence of crowding effects. Indeed, we embarked

upon the project with just this perspective. However, in examing this crowding hypothesis from

both a theoretical perspective that considers rational beliefs, and from an empirical perspective that
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employs direct proxies, we find just the opposite. Optimizing momentum investors identify the po-

tential for crowding to destabilize momentum returns, and they adjust their demands accordingly.

4.6 Crowding and the volatility of momentum returns

If volatility clustering in momentum returns derives from crowding, rather than factors exogenous

to arbitrageur actions, we should find that momentum volatility is predicted by measures of crowd-

ing. To examine this Table 7 presents predictive regressions for realized volatility of momentum

returns computed from raw and risk adjusted (FF3 and dynamic FF3) daily returns over the quarter.

[Insert Table 7 near here]

Consistent with the preceding results, Table 7 finds that lagged realized volatility has strong

predictive power for subsequent volatility, with t-statistics between 6.4 and 9.1 across all regres-

sions. However, ∆Crowdq and Crowdq-1 provide fairly robust inferences that crowding predicts

negatively volatility in momentum returns. The coefficient estimate on both specifications (applied

to BEK measures) is statistically significant at the 5% level in 4 of 12 cases across Panels A and

B, and is negative in all cases. This result is consistent with expectations of risk in the momentum

strategy affecting institutions’ willingness to participate in the strategy. Note that this interpretation

implies that forward-looking institutions observe a wider information set than just lagged volatility

in momentum returns, which we have controlled for.

The explanatory power of crowding measures in Table 7 pales in comparison to that of lagged

realized volatility. This is perhaps not surprising, as lag dependent variables capture all persis-

tent characteristics of the setting. Moreover, lag volatility is estimated using daily data whereas

crowding measures are based on holdings data observed at a quarterly frequency so the precision of

estimates differs greatly. What the crowding measures have going for them is that they are explicit

economic measures brought to bear on the data from theory. Lag dependent variables offer little

economic insight beyond persistence. We believe that this fact makes up for the shortcoming in

predictive power.
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4.7 Determinants of crowding

Table 8 presents regressions of Crowdq on one-year momentum returns and one-year momentum-

return volatility computed from daily observations, lagged at the indicated horizon. To ensure

predetermined values for the 4qtr measures, we add one-year returns and volatility lagged five

quarters to the analysis. From Panel A, the BEK_4qtr specification of Crowdq is significantly neg-

atively related to one-year volatility lagged one quarter. Overlap in observation periods obfuscates

the sequencing of events here (we have already seen from Table 7 that BEK measures predict neg-

atively future risk in the momentum strategy). However the BEK_1qtr specification of Crowdq is

strongly negatively related to past volatility in momentum returns. Combining inferences from the

anticipation (Table 7) and reaction (Table 8) analyses, we conclude that volatility in momentum

returns is a determinant of (reduced) crowding, that its impact is largely anticipatory, and that the

response is fast (no reliable dependence of BEK_4qtr on 5-quarter lagged volatility).

[Insert Table 8 near here]

Chabot et al. (2014) show in a comprehensive sample period of 140 years that the crash risk of

momentum increases after periods of good recent returns in the strategy. Piazzesi and Schneider

(2009) use survey data to study momentum investing in the US housing market and find a substan-

tial increase in the number of momentum investors towards the end of the housing boom. A natural

question is whether this predictive relation stems from crowding.

Table 8 also shows that one-year returns indeed predict positively crowding in momentum. The

coefficients on lagged returns from Table 8 are positive in all regressions and statistically significant

at the 1% level in eight cases out of twelve. In the case of overlap between the estimation period

for 4qtr measures and returns (i.e., top row), the relation is less positive due to the negative effect

of crowding on returns seen in Table 4. However, in the case of returns lagged five quarters, we

again see a reliable positive relation using the base BEK_4qtr specification. This is also seen in

the 1qtr specifications with one-quarter lagged returns. Unfortunately we are unable to relate this
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to the evidence in Chabot et al. (2014) because higher past one-year returns do not predict higher

crash risk in our sample.20

Cooper et al. (2004) show that momentum returns are stronger in bull markets. That evidence

supports the interpretation of momentum as partially caused by over-confident and self-attributing

investors becoming more so during bull markets (Daniel et al., 1998). In unreported results, we do

not find any predictive power of market states for our measures of momentum crowding, once we

control for the lagged returns and volatility of the strategy.

Our results are consistent with the momentum strategy becoming more crowded when its recent

performance is good—both in terms of high returns and low volatility. As previously discussed,

the volatility result suggests that forward-looking rational momentum investors time strategy risk.

Chasing momentum returns may also be consistent with our theory. We have not modeled variance

in δ (the magnitude of dispersion in private information about fundamental value), but predictable

(i.e., persistent) changes in this parameter should yield both higher past momentum returns and

larger momentum demands—i.e., return chasing. In our sample strategy returns do not show time-

series autocorrelation, but that could be an equilibrium result of the stronger demands.

4.8 Capital versus crowd

We have argued that BEK measures track the number of momentum investors and BEKcap mea-

sures track the intensity of their momentum-demands. In our final analysis we consider the two

dimensions of crowding in a multivariate setting. As the intent is to summarize, we consider all

three moments of momentum returns in a single table using the dynamic FF3 model and the BEK

rather than GTW specification for the number of momentum-trading institutions. Results in Table

9 confirm all previous findings.

[Insert Table 9 near here]
20In unreported results we found no significant relation between past one-year momentum returns and crashes in

probit regressions controlling for momentum’s volatility.
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4.9 Comparison with return-based measures of crowding

Lou and Polk (2013) propose a proxy for crowding defined as comomentum, a measure of ab-

normal co-movement of stocks in the momentum portfolio. In support of this proposition, they

document a positive relation between comomentum and aggregate institutional ownership of the

winners portfolio. Huang (2015) argues that the momentum gap, defined as the cross-sectional

dispersion of formation period returns, also proxies for crowding. He supports this by showing

that it is related to the difference in institutional ownership for winner versus loser portfolios. Both

studies find that the indirect, returns-based proxies for crowding negatively relate to momentum re-

turns. Finally, volatility in momentum could also be hypothesized to arise from investor crowding,

potentially representing a third returns-based proxy.

We have already seen that the relation between volatility and institutional crowding is more

consistent with investors using volatility as a signal to avoid tail risk than volatility being caused

by crowding. The question we address here is how other returns-based proxies relate to our direct

measures of institutional crowding. We focus on the momentum gap due to its simplicity; because

it is a strong predictor of risk and return for momentum; and because of its proximity to the theory.

[Insert Table 10 near here]

Table 10 mirrors Table 6, except that the focus is momentum gap and momentum gap orthog-

onalized to our crowding measures. If momentum gap’s predictability stems from institutional

crowding then orthogonalizing it should attenuate its predictability. In each column, we rank all

months in our sample into terciles according to the value of a sorting variable in the last available

quarter. In the first column the ranking variable is the momentum gap. Consistent with Huang

(2015), we find that a high momentum gap forecasts higher volatility, negative skewness, and

excess kurtosis; all with statistical significance at the 1% level.

Next we orthogonalize momentum gap with respect to measures of institutional crowding (de-

noted gap⊥). In addition to levels of BEK_4qtr, GTW_4qtr, and BEKcap_4qtr, we consider ∆Mom
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Inst from Huang (2015), defined as the percentage difference in aggregate institutional ownership

between past winners and losers. We also include the Win Inst measure from Lou and Polk (2013),

defined as the aggregate institutional ownership of the winner decile. Columns 2 to 6 show that

gap⊥ retains substantially all of the predictive power of the momentum gap itself. Overall, the

evidence in Columns 2 to 6 shows that while the momentum gap is a strong predictor of the per-

formance of the strategy, its predictability does not appear to derive from crowding.

Finally, in the last column of Table 10 we orthogonalize the momentum gap to the volatility

control used in many of our empirical exercises. Since the momentum gap is defined as the inter-

quartile range of the return distribution for stocks in a given formation period, it is a measure

of (cross-sectional) dispersion in returns that should be closely related to volatility. Indeed, the

correlation between momentum gap and volatility is 0.73 in our sample period. Nevertheless, gap⊥

remains a reliable predictor of volatility. Volatility averages 35.6% following high gap⊥ versus

21.0% following low gap⊥, with a t-statistic for the difference of 3.2. This suggests that momentum

gap captures different information from that contained in volatility. However, volatility largely

strips momentum gap of significance in its forecasting of higher moments of momentum returns.

Momentum gap relates to tail risk. In principal, that relation could be a reflection of crowded

trades, or some other destabilizing shock that drives prices far apart in the formation period only to

reverse badly in the evaluation period. Our evidence suggests the latter; a conclusion mirrored with

our results for volatility. Both volatility and momentum gap predict tail risk despite the behavior

of institutions, not because of their behavior.

5 Conclusion

We provide a model of momentum investors who infer from past returns regarding the incomplete

assimilation of informed investors’ private signals of value. The model is similar to Stein (2009)

in setting, but our analysis differs in its exploration of and emphasis on rational arbitrageur be-

liefs. Our primary result is that predictions of destabilizing effects from unanticipated crowding
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require a myopic, linear specification of beliefs in which momentum investors do not adequately

account for the potential destabilizing effect of crowding on prices. With rational (generally non-

linear) beliefs, the potential destabilizing effects of crowding are internalized into demands. This

mitigates feedbacking behavior that would otherwise lead to destabilized prices, and results in sta-

ble momentum returns. In short, our theory shows that crowding is not a viable explanation for

momentum crashes, only crowding with myopic arbitrageurs can provide that prediction.

Our empirical contribution is twofold. First, we directly examine proxies for momentum trad-

ing by institutional investors, in contrast to much of the literature which focuses on indirect infer-

ences of crowding from return covariances or volatility. Second, we directly examine the implica-

tions of optimal versus myopic beliefs for patterns in momentum trading.

Across the empirical analyses, we consistently find evidence of crash-avoidance behavior rather

than destabilizing feedback trading. Consistent with our theory under rational beliefs, we find no

evidence that crowding by momentum investors deteriorates the higher moments of momentum

returns (that is, causes crashes), despite a clear impact on the first moment of returns. We do find

that past volatility in momentum returns identifies crashes, as in prior studies. But we also find that

momentum investors both control for this result as well as condition on other sources to anticipate

and back away from periods of instability.
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A Existing literature

Our paper is related to the empirical and theoretical literature on momentum. Momentum was

initially documented for US stock returns (Levy, 1967; Jegadeesh and Titman, 1993) and has since

been documented for stock returns in most countries (Rouwenhorst, 1998) and across asset classes

(Asness et al., 2013). Besides its very high average returns, momentum carries significant down-

side risk or negative skewness in the form of occasional large crashes (Daniel and Moskowitz,

2016). Existing research also shows that institutional investors are momentum traders, i.e., tilt

their portfolios towards momentum stocks (Grinblatt et al., 1995; Lewellen, 2011; Edelen et al.,

2016). Our paper contributes to this literature by directly examining whether uncertain institutional

participation in the momentum strategy is the source of higher-moment return characteristics.

A recent empirical literature examining the time series properties of momentum finds results

broadly consistent with an over-reaction explanation of the effect. The premium is stronger in

periods of bull markets (Cooper et al., 2004), high liquidity (Avramov et al., 2016), high sentiment

(Antoniou et al., 2013), and low market volatility (Wang and Xu, 2015). Hillert et al. (2014)’s

finding that momentum is more pronounced in firms with more media coverage also supports an

over-reaction interpretation, as does the evidence in Edelen et al. (2016) regarding institutional

purchases in the portfolio-formation period. As a whole, this evidence suggests that crowding

plausibly explains the higher-moment characteristics of momentum.

On the other hand, the momentum premium is stronger in stocks experiencing frequent but

small price changes that are less likely to attract attention (Da et al., 2014) or those character-

ized by small trades of investors under-reacting to past returns (Hvidkjaer, 2006). Also there is

recent evidence that momentum is somehow explained by improvements in firm fundamentals

(Novy-Marx, 2015; Sotes-Paladino et al., 2016; DeMiguel et al., 2017). This evidence suggests

momentum investors exploit under-reaction and as such (exogenous increases in) crowding should

reduce its premium.

The related theoretical literature on momentum offers theories based on institutional investors
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and fund flows (Vayanos and Woolley, 2013) or behavioral biases such as over-reaction / self-

attribution (see, e.g., Daniel et al., 1998; Barberis et al., 1998) or information externalities and

gradual diffusion of information (see, e.g., Stein, 1987; Hong and Stein, 1999; Andrei and Cujean,

2017). Our work is most closely related to the latter branch of the literature.

Our model builds on the information externality that the actions of unanticipated momentum

investors impose on their peers. Thus, it is closest in development to Stein (2009), but follows in a

long line of research relating to arbitrageur information coordination and externalities. This litera-

ture dates to Stein (1987) who characterizes the externality, and Scharfstein and Stein (1990) and

Froot et al. (1992) who relate it to herding behavior. Hong and Stein (1999) relate the externality to

persistence and reversal patterns in returns. A related branch of the literature identifies the positive

feedback trading of momentum investors as a source of destabilizing noise in prices, e.g., De Long

et al. (1990a,b).

More recently, Kondor and Zawadowski (2015) study whether the presence of more arbi-

trageurs improves welfare in a model of capital reallocation. Trades in the model can become

crowded due to imperfect information, but arbitrageurs can also devote resources to learn about

the number of earlier entrants. They find that if the number of arbitrageurs is high enough, more

arbitrageurs do not change capital allocations, but decrease welfare due to costly learning.

Related empirical research includes Hanson and Sunderam (2014) who construct a measure

of the capital allocated to momentum and the valuation anomaly (book-to-market or B/M) using

short-interest. They find some evidence that an increase in arbitrage capital has reduced the returns

on B/M and momentum strategies. In addition, Lou and Polk (2013) proxy for momentum capital

with the residual return correlations in the short and long leg of the momentum strategy and find

that momentum profits are lower and crashes more likely in times of higher momentum capital.

While our analysis uses a different approach and insights in proxying for momentum capital, our

result on unanticipated momentum capital and momentum returns is generally consisted with their

finding, but we cannot attribute momentum’s crashes to crowding. Finally, Huang (2015) proposes

a momentum gap variable, which is defined as the cross sectional dispersion of formation period
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returns. He shows that this measure predicts momentum returns and crashes, and argues that this is

consistent with Stein (2009)’s crowded trade theory. Throughout our analysis, we control for mo-

mentum’s past volatility, which has a correlation of 0.73 with the momentum gap measure. We also

verify in Section 4.9 that momentum gap’s predictive power for crash risk is unrelated to various

institutional measures of momentum crowding. This corroborates our finding that momentum’s

crashes are not explained by crowded trades of institutions.

We go beyond the usual focus on first moments to study the determinants of the risk of mo-

mentum. This relates our work to a recent strand of literature focusing on the predictability of

the moments of momentum. Barroso and Santa-Clara (2015) show that the volatility of momen-

tum is highly predictable and it is a useful variable to manage the risk of the strategy. Daniel

and Moskowitz (2016) argues the crash risk of momentum is due to the optionality effect of the

losers portfolio that resembles an out-of-the-money call option after extreme bear markets. Jacobs

et al. (2015) examine the expected skewness of momentum as a potential explanation of its pre-

mium. They propose an enhanced momentum strategy but find that managing its risk results in

a performance hard to reconcile with a premium for skewness. Grobys et al. (2018) find indus-

try momentum has different risk properties from standard momentum but shows similar gains from

risk management. Our results address the question of whether investors condition their exposure to

momentum using this new-found predictability. Consistent with the economic case for managing

the risk of momentum, we find less crowding in momentum after periods of high volatility.
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B Development of momentum portfolio

Stocks are indexed by j. Each pays a discrete dividend X j which evolves according to

log
(
X j/X j,0

)
= χ + ι j

d
2
,

where X j,0 is the beginning of period dividend, χ is a random zero-mean innovation common to

all stocks with variance σ2
χ that generates the market return; the indicator ι j selects the momentum

portfolio, taking on the value 1 or −1 for 10% of all stocks (in each leg); and d generates the

differential return on the two groups of stocks, with variance σ2
ε and mean δ where δ is the private

information in the market. All investors know σ2
ε and σ2

χ. Let X denote the vector of all stocks’

dividends, which is unknown prior to the end of the period, at which point it becomes known to

all. We refer to stocks with ι j = 1 (−1) as winner (loser) stocks.

At the beginning of the period information is symmetric, hence each investor holds the market

portfolio. This results in a vector of public-information valuations P0 = X0/r where r denotes an

unmodelled required return on the market portfolio. At some intermediate time within the period

(portfolio formation date) a subset of investors managing beginning-of-period capital KI observes

δ and ι and trades. This trading identifies the momentum portfolio by generating a formation

period return on winner and loser stocks via informed investors’ demands. Informed investors

expect an end of period price increase of e
1
2 (δ+σ2

χ)+ 1
8σ

2
d for each winner stock and a price decrease

of e
1
2 (−δ+σ2

χ)+ 1
8σ

2
d for each loser stock. Neutral stocks experience no trading, because all market

participants maintain the same expected end of period dividend increase of e
σ2
χ

2 for such stocks.

Uninformed (i.e., momentum and counterparty) investor begin with homogeneous expectations

of dividends for all stocks, equal to their beginning of period values. Thus, the returns on each

winner; loser; and neutral stock are homogeneous within type. Moreover, by presuming the same

average information signal on winner stocks (δ/2) as loser stocks (−δ/2), the long-short portfolio

of winners minus losers (i.e., the momentum portfolio), can be treated as a single asset. The
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information signal on this long-short portfolio, δ, parameterizes the private information in the

market.

C Derivation of Eq. (6)

First notice that solving Eq. (5) is equivalent to solving each of the following (presuming γ > 1)

max
ς

K1−γ
type

1 − γ
· E

[
e(1−γ)(r f +log(1+ς(erp−r f −1)))] ⇔ min

ς
log E

[
e(1−γ) log(1+ς(erp−r f −1))] ,

where ς is the weight on the portfolio of risky asset and rp its log return, and r f is the log risk-

free rate. Second, to solve for the fraction of wealth invested in the risky portfolio, we follow

Section 2.1.1 in Campbell and Viceira (2002, Internet Appendix) and approximate the function

g
(
rp − r f

)
= log (1 + ς (erp−r f − 1)) using a second-order Taylor expansion around 0:21

g
(
rp − r f

)
� log (1) +

ςe0

1 + ς
(
e0 − 1

) (
rp − f

)
+

1
2

ς
[
e0

(
1 + ς

(
e0 − 1

))
− ςe2·0

]
(
1 + ς

(
e0 − 1

))2

(
rp − f

)2
,

� ς
(
rp − f

)
+

1
2

(
ς − ς2

)
σ2, (C.1)

where
(
rp − f

)2
is replaced with its expected value σ2. Using Eq. (C.1), we can then rewrite the

maximization problem to

min
ς

log E
[
exp

[
1
2

(
ς − ς2

)
(1 − γ)σ2

p

]
· exp

[
ς (1 − γ)

(
rp − r f

)]]
,

⇔min
ς

1
2

(
ς − ς2

)
(1 − γ)σ2

p + ς (1 − γ)
(
µp − r f

)
+

1
2
ς2 (1 − γ)2 σ2

p,

⇔max
ς

ς

(
µp − r f +

1
2
σ2

p

)
−

1
2
ς2γσ2

p,

21See also, e.g., Peress (2004), for the use of this approximate solution to the CRRA portfolio choice problem in a
noisy rational expectations setting.
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which has solution

ς =
µp − r f + 1

2σ
2
p

γσ2
p

.

To proceed, we will assume that log returns and arithmetic returns are similar such that µp − r f +

1
2σ

2
p � eµp−r f � µp − r f . We then determine µp and σ2

p in the context of a portfolio comprised of

the market investment plus a long-short momentum investment. Because the momentum portfolio

is self-financing, feasible combinations of the market portfolio and the momentum portfolio are

given by the weight vector w′ =

[
1 wm

]
, i.e., hold the market portfolio plus a proportionate long-

short momentum overlay wm. The optimal risky portfolio is then that choice of wm that solves the

constrained optimization

min
w

w′Σw
2

, s.t. µ′w = r∗ − r f ,

using weights w′ =

[
1 wm

]
, where

µ =

 r − r f

Etype [m + ε]

 , Σ =

 σ2
χ 0

0 Vartype [m + ε]

 ,
and r∗ − r f is a target return premium that traces out the efficient frontier (recall r is the required

return on the market portfolio). This has solution

wm =
Etype [m + ε]

/
Vartype [m + ε](

r − r f

) /
σ2
χ

. (C.2)

Using Eq. (C.2), the parameters of the optimal risky portfolio are

µp − r f =

[
r − r f Etype [m + ε]

]  1

wm

 = r − r f + wmEtype [m + ε] ,
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and

σ2
p = w′Σw = σ2

χ + w2
mVartype [m + ε] =

σ2
χ

r − r f

(
r − r f + wmEtype [m + ε]

)
.

Taking the ratio gives

ς =
r − r f

γσ2
χ

. (C.3)

Combining Eqs. (C.2) and (C.3),

Demand = wmςKtype =
Etype [m + ε]

γVartype [m + ε]
Ktype.

D Negative market-clearing price for momentum portfolio

In the case of kM > λE, the demand of momentum investors (RHS Eq. (11)) increases with a

positive f faster than the LHS supply can keep up with, implying an increasingly large buying

imbalance as f rises (depicted in the third panel of Figure 1). This again suggests that momentum

investors buy up to their capacity, leading to a subsequent momentum crash.

However, when kM > λE there is also a (finite) negative value for f that clears the market.

While we discount this equilibrium as implausible, we note that even here the contrary pricing of

winner and loser stocks implies a substantial negative momentum return, because the formation-

period ‘winners’ are actually the fundamental losers, and vice versa.

It is not clear how this f < 0 equilibrium could be found, because informed investors pre-

sumably seed formation-period returns with buying of the momentum portfolio (and an initially

positive f ). Nevertheless, it is a call auction and if they were to bizarrely trade contrary to their

private information, seeding a negative value for f , then they might be lucky enough to induce

momentum investors into selling (buying) so much winner (loser) stock that their bizarre trade is

preferred.

36



E Joint pdf for the market clearing price

Let

F : (δ, kI , kM)→ f =
1
D

δkI +
δE

1 + δV

σ2
d

kM

 ,
which characterizes market clearing as in Eq. (7). We map the primitive random variables into


δ

kM

kI

→


δ

kM

F (δ, kM, kI)

 .

Next, we need

| J | = det


∂δ
∂δ

∂δ
∂kM

∂δ
∂kI

∂kM
∂δ

∂kM
∂kM

∂kM
∂kI

∂F−1

∂δ
∂F−1

∂kM

∂F−1

∂kI

 =
D
δ
.

Following a standard result (see, e.g., Theorem 2 in Section 4.4 of Rohatgi and Saleh, 2000), the

density is then given by

p4 (δ, kM, f ) = g (δ) h
(
kM, F−1

)
| J | ,

= g (δ) h

kM,
1
δ

 f D −
δE

1 + δV

σ2
d

kM


 D
δ
.
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(a) one quarter (b) four quarters

Figure 2: Measures of crowding

Panel (a) and (b) report the _1qtr and _4qtr crowding measures, respectively, constructed with 13F holdings data in
the period from 03/1980 to 09/2015. The shaded areas denote NBER recessions.
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Table 1: Momentum returns in simulations

The table reports unconditional return statistics for the simulations described in the caption of Figure 1. Mean, stdev,
skew, kurt, min, and max refer to average, standard deviation, skewness, kurtosis, minimum, and maximum, respec-
tively. Panel A reports the results for the case of known crowding, Panel B is myopic beliefs, Panel C is optimal linear
beliefs, and Panel D is rational beliefs. We thereby consider the low var(k) case in which the Dirichlet distribution
has the concentration parameters αi = 12, and the high var(k) case in which αi = 3. The slopes of the optimal linear
beliefs are chosen to maximize the utility of a CRRA investor with γ = 2, and they are reported in the row labelled
λ−1. Profits are the expected portfolio returns of γ = 2 investor, and certainty equivalents ‘cer(γ)’ are calculated for
γ = 2, 4, 10, with portfolio weights calculated as in Eq. (6). Momentum returns are given by d = m + ε where ε is
randomly drawn from a zero-mean normal distribution with standard deviation 0.125. Cer(γ) is an arithmetic return;
all other statistics are based on log returns.

Panel A Panel B Panel C Panel D

var(k) low high low high low high low high
λ−1 1.50 1.50 1.38 1.12
Expected momentum returns m

mean 3.0% 3.0% 2.7% -2.4% 3.4% 4.2% 3.0% 3.0%
stdev 0.8% 1.4% 19.5% 174.2% 1.4% 2.0% 1.1% 1.6%

skew 0.5 0.6 -300.5 -151.3 -0.3 -0.3 0.3 0.4
kurt 3.3 3.1 92991.2 29218.7 4.7 10.8 3.2 3.0

min 0.74% 0.05% -6046.58% -38957.17% -15.64% -53.10% -1.38% -2.55%
max 7.57% 10.26% 10.38% 13.16% 10.78% 13.28% 9.36% 11.53%

Realized momentum returns d

profit 3.17% 3.65% -58.05% -4863.08% 2.18% 0.65% 2.98% 3.44%

cer(2) 2.37% 2.62% -100.00% -100.00% 1.94% 0.74% 2.28% 2.53%
cer(4) 1.18% 1.30% -100.00% -100.00% 0.96% 0.37% 1.13% 1.25%
cer(10) 0.47% 0.52% -100.00% -100.00% 0.38% 0.15% 0.45% 0.50%
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Table 3: Transition frequencies

Panel A tabulates the probability of remaining in the classification indicated in the row heading at the time indicated
in the column header (q indexes quarters), conditional on the later period not containing a missing observation. The
likelihood is here the conditional relative to the unconditional probability of classification. Panel B contains the
probability of being a net buyer of momentum stocks (i.e., being classified as a momentum investor according to
BEK_1qtr) in the quarter indicated in the column heading conditional on the classification indicated in the row heading
in q. The likelihood is now taken relative to the unconditional probability of being a net buyer of momentum stocks.
Panel C tabulates the transition probabilities for the stocks’ membership in the winner, loser, or middle deciles of the
momentum ranking. ‘All q’ refers to the unconditional probability of classification.

Panel A. Institutions’ type

probabilities likelihood
q+1 q+4 All q q+1 q+4

GTW_1qtr 0.54 0.54 0.45 1.20 1.19

GTW_4qtr 0.71 0.34 0.10 7.05 3.32

BEK/BEKcap_1qtr 0.57 0.56 0.49 1.17 1.16

BEK/BEKcap_4qtr 0.71 0.31 0.12 5.99 2.62

Panel B. Institutions’ trading

probabilities likelihood
q q+1 q+4 q q+1 q+4

GTW_1qtr 0.68 0.57 0.56 1.39 1.16 1.15

GTW_4qtr 0.78 0.70 0.69 1.60 1.44 1.42

BEK/BEKcap_1qtr 1.00 0.57 0.56 2.06 1.17 1.16

BEK/BEKcap_4qtr 1.00 0.71 0.68 2.06 1.46 1.41

Panel B. Stock returns

q+1 q+4 All
Win. mid Los. Win. mid Los.

Winner 0.56 0.42 0.02 0.16 0.60 0.23 0.13
mid 0.08 0.82 0.09 0.12 0.74 0.14 0.67

Loser 0.02 0.33 0.65 0.17 0.52 0.31 0.19
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Table 4: Momentum factor returns on crowding measures

Each column represents a predictive regression of quarterly momentum factor returns (1981–2015) on
crowding. Each panel presents three specification: (1) without controlling for risk-factors; (2) control-
ling for the Fama and French three factor model; and (3) controlling for the dynamic factor model with the
three factors interacted with dummies for positive past annual factor returns. Each set considers the three
indicated crowding measures. The regressor ‘Crowd’ refers to the level of the crowding measure at the end
of quarter q-1; ∆Crowdq refers to the change over quarter q; and σ̂Crowd is the estimate of volatility from a
GARCH(1,1) model. ‘Realized vol. of Mom rets.’ is a control variable equal to the lagged realized volatility
of daily momentum returns over the previous quarter (intercepts not tabulated). The t-statistics are computed
with White standard errors.

Panel A. Crowding measures constructed using four-quarter trading histories

Model: cumulative returns FF3 dynamic FF3
Measure: GTW BEK BEKcap GTW BEK BEKcap GTW BEK BEKcap

∆Crowdq -0.29 -0.41 -0.27 -0.37 -0.47 -0.31 -0.33 -0.44 -0.22
(-1.4) (-2.1) (-0.9) (-1.8) (-2.7) (-1.1) (-1.8) (-2.4) (-0.6)

Crowdq-1 -0.50 -0.15 0.28 -0.53 -0.13 0.26 -0.58 -0.12 0.33
(-3.4) (-1.1) (1.0) (-3.7) (-1.3) (1.2) (-4.3) (-1.3) (1.6)

σ̂Crowd 4.61 1.83 0.14 5.52 2.51 0.25 6.61 1.60 -0.13
(2.3) (0.8) (0.2) (2.8) (1.2) (0.4) (3.7) (0.8) (-0.2)

Realized vol. -0.29 -0.34 -0.32 -0.31 -0.36 -0.33 -0.25 -0.30 -0.27
of Mom rets. (-1.6) (-1.8) (-1.7) (-2.2) (-2.6) (-2.4) (-2.2) (-2.5) (-2.3)

Adj-rsquare 12.1% 10.1% 9.3% 25.8% 24.3% 22.6% 37.7% 33.3% 32.3%

Panel B. Crowding measures constructed using one-quarter trading histories

Model: cumulative returns FF3 dynamic FF3
Measure: GTW BEK BEK GTW BEK BEKcap GTW BEK BEKcap

∆Crowdq -0.03 -0.03 -0.04 -0.02 -0.05 -0.10 -0.03 -0.11 -0.11
(-0.4) (-0.5) (-0.5) (-0.4) (-0.8) (-1.3) (-0.4) (-1.3) (-1.1)

Crowdq-1 -0.07 -0.02 0.14 -0.06 -0.02 0.11 -0.02 0.00 0.16
(-1.0) (-0.2) (1.3) (-0.9) (-0.2) (1.3) (-0.2) (0.0) (2.1)

σ̂Crowd 0.78 0.24 0.05 0.76 0.33 0.17 0.83 0.30 0.03
(1.8) (0.7) (0.2) (1.9) (1.2) (0.8) (1.6) (0.9) (0.1)

Realized vol. -0.31 -0.30 -0.32 -0.32 -0.32 -0.35 -0.27 -0.25 -0.29
of Mom rets. (-1.7) (-1.6) (-1.6) (-2.3) (-2.2) (-2.4) (-2.4) (-1.9) (-2.4)

Adj-rsquare 9.1% 6.7% 9.6% 21.6% 20.2% 23.5% 31.8% 33.2% 35.1%
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Table 6: Conditional volatility, skewness and kurtosis of momentum returns

We split the sample of monthly momentum returns (1981–2015) into terciles according to crowding
(‘Crowd’), change in crowding (‘∆Crowd’) or volatility in the last available quarter for each month. In
all cases the crowing measure is constructed using a four-quarter trading history. The T1 stands for the
bottom tercile, T2 for the second tercile and T3 for the top tercile. The values in parenthesis are t-statistics
for the difference between T3 and T1 obtained with the delta method.

∆Crowd Crowd Realized vol.
GTW BEK BEKcap GTW BEK BEKcap of Mom rets.

Volatility
T1 25.7 27.9 32.0 32.6 33.5 21.8 15.3
T2 26.3 27.0 18.5 26.5 19.3 26.3 17.3
T3 25.9 22.9 25.7 16.5 23.2 29.4 38.7

(0.0) (-1.0) (-1.2) (-3.5) (-2.2) (1.8) (5.7)

Skewness
T1 -1.8 -2.5 -1.2 -1.7 -2.0 -0.4 -0.3
T2 -1.2 -1.3 -0.5 -1.1 0.0 -2.4 -0.3
T3 -1.5 0.2 -2.1 -0.6 0.0 -1.2 -1.2

(0.2) (4.1) (-0.8) (1.8) (3.3) (-0.9) (-2.0)

Kurtosis
T1 15.4 15.4 8.5 10.5 10.5 4.7 4.0
T2 9.0 8.5 4.2 8.2 3.8 15.3 4.1
T3 10.5 5.4 14.1 4.7 5.6 9.7 6.5

(-1.0) (-3.6) (1.2) (-2.8) (-2.4) (1.7) (2.1)
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Table 7: Volatility in momentum factor returns on crowding measures

Each column represents a predictive regression of realized volatility in daily momentum factor returns over
the next quarter (1981–2015) on crowding. Each panel presents three sets of dependent variables using
daily: (1) raw returns on the momentum portfolio; (2) residual returns using the Fama and French three
factor (FF3) model; and (3) residual on FF3 using dynamic weights. Each set considers the three indi-
cated crowding measures. The regressor ‘Crowd’ refers to the level of the crowding measure at the end
of quarter q-1; ∆Crowdq refers to the change over quarter q; and σ̂Crowd is the estimate of volatility from a
GARCH(1,1) model. ‘Realized vol. of Mom rets.’ is a control variable equal to the lagged realized volatility
of daily momentum returns/residuals over the previous quarter (intercepts not tabulated). The t-statistics are
computed with Newey-West standard errors with 3 lags.

Panel A. Crowding measures constructed using four-quarter trading histories

Dependent variable: vol of returns vol of dynamic FF3 residuals
Crowding measure: GTW BEK BEKcap GTW BEK BEKcap

∆Crowdq -0.06 -0.16 -0.01 -0.05 -0.11 -0.10
(-0.4) (-0.9) (-0.0) (-0.5) (-0.6) (-0.4)

Crowdq-1 -0.05 -0.10 0.02 -0.10 -0.09 0.00
(-0.5) (-1.8) (0.2) (-1.2) (-2.0) (0.0)

σ̂Crowd -1.69 0.74 0.71 -0.75 0.51 0.56
(-0.9) (0.6) (1.5) (-0.6) (0.6) (1.9)

Realized vol. 0.77 0.77 0.76 0.74 0.74 0.73
of Mom rets. (9.1) (7.3) (7.8) (9.1) (6.7) (7.5)

Adj-rsquare 63.5% 63.4% 63.8% 59.5% 59.2% 59.8%

Panel B. Crowding measures constructed using one-quarter trading histories

Dependent variable: vol of returns vol of dynamic FF3 residuals
Crowding measure: GTW BEK BEKcap GTW BEK BEKcap

∆Crowdq -0.08 -0.09 -0.03 -0.07 -0.09 -0.06
(-2.2) (-2.2) (-0.3) (-2.6) (-2.9) (-0.7)

Crowdq-1 -0.05 -0.02 0.05 -0.02 -0.03 0.05
(-1.3) (-0.5) (1.3) (-0.6) (-0.7) (1.5)

σ̂Crowd 0.47 0.44 0.04 0.48 0.32 0.06
(1.6) (2.1) (0.2) (1.6) (1.6) (0.5)

Realized vol. 0.80 0.77 0.79 0.76 0.74 0.75
of Mom rets. (8.3) (7.1) (7.4) (7.9) (6.4) (7.2)

Adj-rsquare 64.6% 65.9% 63.2% 61.3% 63.1% 59.8%
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Table 8: Momentum factor returns as a determinant of crowding

Each column represents a predictive regression of a different crowding measure on lag momentum returns and lag mo-
mentum realized volatility. Panel A shows the results for four-quarter measures and Panel B for one-quarter measures.
Volatility is computed using daily momentum returns (intercepts not tabulated). The t-statistics are computed with
Newey-West standard errors with 3 lags.

Panel A Panel B
Crowding horizon: 4qtr 1qtr

Crowding measure: GTW BEK BEKcap GTW BEK BEKcap

1yr returnq-1 0.39 0.28 0.28 1.03 0.53 0.74
(2.6) (1.1) (2.3) (3.5) (2.0) (2.2)

1yr returnq-5 0.53 0.49 0.12 0.53 0.57 0.30
(3.0) (2.2) (1.1) (2.2) (1.9) (0.9)

1yr volatilityq-1 -0.38 -0.38 -0.03 -0.25 -0.39 -0.09
(-4.4) (-2.9) (-0.6) (-1.7) (-2.3) (-0.7)

1yr volatilityq-5 0.19 0.08 -0.09 0.31 0.17 -0.22
(2.4) (0.6) (-1.2) (2.5) (1.1) (-1.1)

Adj-rsquare 18.9% 16.3% 18.0% 10.4% 4.7% 18.8%
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Table 9: Regressions of momentum return moments on crowd count and crowd capital jointly estimated

Each column presents a regression of the indicated momentum return metric as the dependent variable
and the indicated horizon for estimating the crowding measure (1qtr or 4qtr). In the case of ‘left-tail’ the
regression is Probit as in Table 5. Return refers to the dynamic Fama-French 3 factor residual for the Probit
and Volatility panels, and to a regression with the dynamic FF3 factors as controls in the Returns panel. All
regressors in the row headings are included in each regression. Thus, the regressions in the columns labelled
‘Returns’ correspond to Table 4 using BEK and BEKcap and dynamic FF3 (but estimated jointly). Likewise,
the regressions in the columns labelled ‘left-tail’ and ‘Volatility’ correspond to jointly estimated versions of
Tables 5 and 7, respectively, for the case of BEK and dynamic FF3 residuals. T-statistics are reported in
parenthesis, and the p-values of a Wald test that the effect of a regressor on the left and corresponding right
tail (not tabulated) sum to zero are reported for the probits in brackets.

Dependent variable: Returns 10% left-tail 5% left-tail Volatility

Crowding horizon: 1qtr 4qtr 1qtr 4qtr 1qtr 4qtr 1qtr 4qtr

Crowd = BEK

∆Crowdq -0.11 -0.43 4.4 20.4 9.5 -2.4 -0.10 -0.08
(-1.7) (-2.7) (1.3) (1.9) (1.8) (-0.2) (-3.0) (-0.6)

[0.68] [0.44] [0.36] [0.45]

Crowdq-1 -0.04 -0.28 6.1 12.2 15.6 11.6 -0.04 -0.13
(-0.6) (-2.8) (1.3) (1.9) (2.2) (1.4) (-1.0) (-2.8)

[0.20] [0.70] [0.05] [0.52]

σ̂Crowd 0.11 3.41 -5.0 56.9 32.3 37.7 0.37 0.34
(0.3) (1.7) (-0.3) (0.7) (1.2) (0.4) (2.0) (0.4)

[0.77] [0.07] [0.74] [0.09]

Crowd = BEKcap

∆Crowdq -0.01 0.12 1.3 4.7 12.9 18.9 0.07 -0.01
(-0.1) (0.4) (0.2) (0.3) (1.5) (0.8) (1.1) (-0.1)

[0.98] [0.93] [0.17] [0.28]

Crowdq-1 0.16 0.70 -4.3 -6.9 -9.7 -21.3 0.06 0.12
(2.3) (3.1) (-1.2) (-0.5) (-1.4) (-1.2) (2.1) (1.6)

[0.84] [0.18] [0.40] [0.35]

σ̂Crowd 0.05 -0.84 14.1 26.9 -1.4 30.1 -0.04 0.41
(0.2) (-1.1) (1.3) (0.9) (-0.1) (0.8) (-0.4) (1.5)

[0.24] [0.53] [0.44] [0.78]

Control:

Realized vol. -0.28 -0.35 11.2 12.3 13.3 13.4 0.74 0.69
of Mom rets. (-2.2) (-3.1) (3.4) (3.5) (3.4) (3.2) (6.2) (6.1)

[0.00] [0.00] [0.00] [0.03]
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Table 10: Robustness: conditional volatility, skewness, and kurtosis of momentum returns

To calculate each column we split monthly momentum returns (1981–2015) into terciles every four quar-
ters according to the level of Huang (2015)’s momentum gap variable in the column ‘Mom Gap’, and the
momentum gap variable orthogonal to the variables shown for the other columns. Variables not previously
used are ‘∆Mom Inst’ which is the percentage difference in aggregate institutional ownership between past
winners and losers (see, Huang, 2015), and ‘Win Inst’ which is the aggregate institutional ownership of the
winner decile (see, Lou and Polk, 2013). T1 stands for the bottom tercile, T2 for the second tercile and T3
for the top tercile. The values in parenthesis are t-statistics for the difference between T3 and T1 obtained
with the delta method.

Mom
Gap orthogonal to

∆Mom Win Crowd Realized vol.
Inst Inst GTW BEK BEKcap of Mom rets.

Volatility
T1 12.8 12.2 13.5 12.7 13.2 13.3 21.0
T2 19.2 19.9 18.7 19.4 19.0 19.2 17.8
T3 38.6 38.5 38.6 38.6 38.6 38.4 35.6

(6.4) (6.7) (6.2) (6.6) (6.4) (6.4) (3.2)

Skewness
T1 -0.3 -0.4 -0.3 -0.3 -0.2 -0.5 -0.7
T2 0.0 0.0 0.0 -0.1 0.0 0.3 -0.2
T3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.5

(-2.4) (-2.2) (-2.6) (-2.5) (-2.7) (-2.0) (-1.4)

Kurtosis
T1 3.3 3.4 3.2 3.4 3.4 3.4 6.4
T2 3.8 3.7 4.2 3.8 3.9 4.8 4.8
T3 6.6 6.6 6.6 6.6 6.6 6.5 8.4

(2.9) (2.8) (3.1) (2.9) (3.0) (2.8) (1.1)
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Internet Appendix to accompany the paper

“Crowded trades and crash risk: The case of

momentum”
(Not for publication)

This Internet Appendix contains two robustness checks for the simulation analysis in Section

3 of the paper. Our benchmark is the simulation with Dirichlet concentration parameters αi = 12,

i.e., the low var(k) case, and we investigate the impact of changing the distributional assumptions

for δ and higher concentration parameters.

First, we ask whether our results are robust to using a uniform distribution for δ instead of a

lognormal distribution. In particular, we let δ follow a uniform distribution on [0.06, 0.12], and

leave the setting otherwise identical to the one in the paper. The results are reported in Figure IA.1

and Table IA.1. In summary, the results are very similar to those in Section 3’s low var(k) case.

In the myopic beliefs case, momentum returns again have pronounced negative skewness, high

volatility and large excess kurtosis, and they are well behaved with low volatility, slightly positive

skewness, and no excess kurtosis in the rational beliefs case.

Second, we ask whether the beliefs specifications for unknown capital become more similar

to the known capital case when var(k) is very small. To achieve this, we set the concentration

parameters αi = 60 in the Dirichlet distribution, and leave the setting otherwise identical to the one

in the paper. The results in Figure IA.2 and Table IA.2 verify that crashes disappear in the myopic

beliefs case once capital uncertainty is negligible. Momentum returns in all four specifications are

now well behaved and have similar return characteristics.
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Table IA.1: Momentum returns in simulations – uniform distribution

The table reports unconditional return statistics for the simulations described in the caption of Figure IA.1. The top
part contains the descriptive statistics of expected momentum returns across all simulations. Mean, stdev, skew, kurt,
min and max refer to average, standard deviation, skewness, kurtosis, minimum, and maximum, respectively. Panel A
reports the results for known crowding, Panel B is the case with myopic beliefs, Panel C with optimal linear beliefs,
and Panel D with rational beliefs. The Dirichlet distribution has the concentration parameters αi = 12, and δ follows
a uniform distribution on [0.06, 0.12]. The slopes of the optimal linear beliefs are chosen to maximize the utility of a
CRRA investor with γ = 2, and they are reported in the row λ−1. Profits are likewise the expected portfolio returns of
γ = 2 investor, and certainty equivalents ‘cer(γ)’ are calculated for γ = 2, 4, 10, with portfolio weights calculated as in
(6). Momentum returns are given by d = m + ε where ε is randomly drawn from a zero-mean normal distribution with
standard deviation 0.125. Cer(γ) is an arithmetic return, and all other statistics are based on log returns.

Panel A Panel B Panel C Panel D

λ−1 1.50 1.34
Expected momentum returns m

mean 3.0% 2.8% 3.5% 3.0%
stdev 0.9% 2.7% 1.4% 1.4%

skew 0.5 -92.9 -0.1 0.3
kurt 3.1 17386.3 9.6 2.9

min 0.61% -534.41% -35.57% -2.04%
max 7.51% 9.22% 9.38% 8.56%

Realized momentum returns d

profit 3.11% 1.75% 1.99% 2.78%

cer(2) 2.30% -100.00% 1.85% 2.16%
cer(4) 1.14% -100.00% 0.92% 1.07%
cer(10) 0.45% -100.00% 0.37% 0.43%
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Table IA.2: Momentum returns in simulations – very low var(k)

The table reports unconditional return statistics for the simulations described in the caption of Figure IA.2 and is
constructed in the same fashion as Table IA.1.

Panel A Panel B Panel C Panel D

λ−1 1.50 1.44
Expected momentum returns m

mean 3.0% 3.0% 3.3% 3.0%
stdev 0.5% 0.8% 0.7% 0.7%

skew 0.4 0.2 0.3 0.3
kurt 3.4 3.3 3.3 3.3

min 1.39% -0.39% 0.41% 0.18%
max 6.13% 7.12% 7.35% 7.35%

Realized momentum returns d

profit 3.02% 2.90% 2.64% 2.91%

cer(2) 2.29% 2.15% 2.24% 2.24%
cer(4) 1.14% 1.07% 1.11% 1.11%
cer(10) 0.45% 0.43% 0.44% 0.44%
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