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Abstract

The aim of this paper is to describe globally the behavior and preferences of het-
erogeneous agents. Our starting point is the aggregate wealth of a given economy, with
a given repartition of the wealth among investors, which is not necessarily Pareto op-
timal. We propose a construction of an aggregate forward utility, market consistent,
that aggregates the marginal utility of the heterogeneous agents. This construction
is based on the aggregation of the pricing kernels of each investor. As an application
we analyze the impact of the heterogeneity and of the wealth market on the yield curve.
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1 Introduction

Most of general equilibrium macroeconomic models are simplified by assuming that
consumers and/or firms could be described as a representative agent. That is agents
may differ and act differently, but at equilibrium the sum of their choices is mathemat-
ically equivalent to the decision of one individual or many identical individuals. The
way that preferences of multiple agents aggregate at equilibrium is a difficult task, and
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even if each individual preference is modeled by a simple function, it is unlikely that
the aggregate utility could be reduced into a simple expression (unless all agents are
identical). Heterogeneity of investors is an unavoidable feature that should be taken
into account.

The literature on equilibrium risk sharing in complete markets with heterogeneous
risk preferences starts with the seminal paper by Dumas [Dum89], with two agents with
heterogeneous risk preferences. Chan and Kogan [CK02] consider an extension of the
Wang [Wan96] model, with a continuum of agents with heterogeneous risk aversions.
Yan [Yan10] and Jouini et al. [JN10] stress the impact of relative wealth fluctuations
on the equilibrium characteristics. Cvitanic, Jouini et al. [CJMN11] were the first to
propose an equilibrium model dealing with three types of heterogeneity: investors may
differ in their beliefs, in their level of risk aversion and in their time-preference rate.
They identify the channels through which heterogeneity impacts the different equilib-
rium characteristics. In their model, the aggregate parameters can be written as a risk
tolerance weighted average of the individual parameters.
In the meantime, the existence of an equilibrium is not always satisfied and equilib-
rium are often stated and studied in a complete market setting. One key point for the
existence of equilibrium is that agents agree on the same state price density process
(also called pricing kernel), which is the same for all agents. However, if no equilibrium
exists, is it still possible to propose a representative utility aggregating the preferences
of all investors in a given economy? In this paper, a given economy may be understood
for example as a market or an exchange in a given country (France, England, USA ...)

In this paper, we start from the weaker hypothesis of non arbitrage, and we con-
sider an incomplete market, with given exogenous market parameters. Our aim is to
propose a way of describing globally the behavior of heterogeneous agents investing
in this market, heterogeneous by their preferences, their weights or sizes. To do this
we construct a stochastic utility process corresponding to the aggregate wealth of the
economy and to the aggregate pricing kernels. We do not deal with agents interactions,
nor equilibrium, neither Pareto optimality: the repartition of the wealth among market
investors is given. The wealth of the economy is naturally defined by the aggregation
of the wealth of all individuals. The problem consists then in deriving a utility process
for which this aggregate wealth is optimal. This is related to a calibration approach,
and to do this the progressive framework is well adapted (see [KHM17a]). Besides,
the progressive approach has also many advantages. First of all, it allows to model
the change of the preferences of the investors along time. Indeed, in a dynamic and
stochastic environment, the standard notion of utility function is not flexible enough to
help us to make good choices in the long run. The utility criterion must be adaptative
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and adjusted to the information flow. Musiela and Zariphopoulou [MZ07, MZ10b] were
the first to suggest to use instead of the classic criterion the concept of progressive
dynamic utility, that gives an adaptive way to model possible changes over the time of
individual preferences of an agent. The particular case of time-decreasing progressive
utilities has been studied by Berrier et ali in [BRT09, BT11] and Zariphopoulou et ali
in [MZ10a]. Zitkovic in [Zit09] gives a dual characterization of exponential progressive
utilities. Characterization of market-consistent progressive utility in a general setting
has been then studied in El Karoui and Mrad [KM13, KM16b].
Secondly, the theoretical study of progressive utility emphasizes the dependency of the
optimal processes with respect to their initial conditions. This dependency and some
non linearity effects are illustrated in the example of the valuation of the discount rates.
In the economic modeling, interest rates are determined endogenously at equilibrium,
mainly in an economy composed of identical investors (see for example the well known
Vasicek [Vas77] or Cox Ingersoll Ross [CIR85] models). In our framework, the market
is incomplete and in place of the traditional (complete) pricing rule, we price the zero-
coupon bonds using the indifference pricing rule, based on the marginal indifference
pricing. A numerical example is proposed based on an extension of the Vasicek model
of the yield curve.

The paper is organized as follow. First we define in Section 2 the investment universe
and we recall the framework and the main properties of market consistent progressive
utilities, and the characterization of a consistent utility from its optimal primal and
dual processes. Section 3 states the main results about preferences aggregation: from
the characteristics of the investors, we construct an aggregate consistent progressive
utility process, by aggregating the wealth of each investors and their pricing kernels. To
illustrate this theory, we give the example of aggregating power utilities. In particular
we show that aggregating power utilities does not lead to a power utility, except if all
investors share the same risk aversion. Thus taking a power utility for the representative
agent, as it is done in many economic papers, assumes actually a very strong hypothesis
of homogeneity of the different investors in the economy. Section 4 studies the impact
of the heterogeneity of investors, that induces dependency and non-linearity in the
valuation of financial assets. The particular example developed here consists in the
valuation of discount rates and the impact of the aggregate wealth on this rates. Some
numerics illustrate the impact of the different parameters on the yield curve. Technical
regularity conditions are postponed in the Appendix.
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2 Investment universe and Consistent progressive utility.

The economy (sector, class) we are interested in is part of a larger one (for example the
world economy). We model below this global market called the "investment universe".

2.1 The investment universe

Let us consider an incomplete Itô market, defined on a filtered probability space
(Ω, (Ft),P) (satisfying usual conditions of completion and right continuity) driven by
a n-standard Brownian motion W . As usual, the market is characterized by some
exogenous progressive processes: the short rate (rt) and a n-dimensional risk premium
(ηt), satisfying the integrability condition

∫ T
0 (rs + |ηs|2)ds < ∞ for any T . The agent

may invest in this financial market and we assume that her strategies do not affect
the market prices. To be short, we give the mathematical definition of the class of
admissible strategies1 (κt), without specifying the risky assets. The incompleteness of
the market is expressed by restrictions on the risky portfolios κt constrained to live in
a given progressive vector space Rt. To fix the idea, if the incompleteness follows only
from the fact that the number of assets is less than the dimension n of the Brownian
motion, then typically Rt = σt(Rn). For an Itô market, good references are Karatzas,
Lehoczky, Shreve [KLS87] or the book of Karatzas and Shreve [KS01], and in a more
general context Kramkov, Schachermayer [KS03].
To avoid technicalities, we assume throughout the paper that all the processes satisfy
the necessary (progressive) measurability and integrability conditions such that the
following formal manipulations and statements are meaningful. The following short
notations will be used extensively. Let R be a vector subspace of Rn. For any x ∈ Rn,
xR is the orthogonal projection of the vector x onto R and x⊥ is the orthogonal pro-
jection onto R⊥.

Definition 2.1 (Admissible portfolio). (i) The self-financing dynamics of a wealth
process with risky portfolio κ, starting from the initial wealth x > 0, is given by

dXκ
t = Xκ

t [rtdt+ κt(dWt + ηtdt)], κt ∈ Rt, and Xκ
0 = x (2.1)

where κ is a progressive n-dimensional vector measuring the volatility vector of the
wealth Xκ, such that

∫ T
0 ‖κt‖

2dt <∞, a.s..
(ii) A self-financing strategy (κt) is admissible if the portfolio κ lives in a given pro-
gressive family of vector spaces (Rt) a.s..

1κt = σtπt with π being the fraction of wealth invested in the risky assets, and σ being the volatility
process.
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(iii) The set of the wealth processes with admissible (κt) (called admissible wealth pro-
cesses) starting from the initial wealth x is denoted by X (x), and X when the initial
wealth is not specified.

Note that the multiplicative form of the wealth dynamics (2.1) implies that the wealth
processes are positive. The existence of a risk premium η formulates the absence of
arbitrage opportunity. Since from (2.1), the impact of the risk premium on the wealth
dynamics only appears through the term κt.ηt for κt ∈ Rt, there is a "minimal" risk
premium (ηRt ), the projection of ηt on the space Rt (κt.ηt = κt.η

R
t ), to which we refer

in the sequel. In the following definition, we are interested in the class of the so-called
state price density processes Y ν (taking into account the discount factor) which are
also called the pricing kernels.

Definition 2.2 (State price density process). A positive Itô semimartingale Y ν is called
an admissible state price density process if for any admissible wealth process Xκ ∈X ,

Xκ
t Y

ν
t is a local martingale. (2.2)

The simplest example of such process is the market state price process Y 0 (ν = 0, Y 0
0 =

1). In particular (Xκ
t Y

0
t ) is a local martingale, whose volatility (κt−ηRt ) belongs to Rt.

The martingale property (2.2) can be then expressed in terms of the ratio (Lνt = Y ν
t /Y

0
t )

as (Xκ
t Y

0
t L

ν
t ) is a local martingale or equivalently (Lνt ) is a local exponential martingale

whose volatility belongs to R⊥t .

Corollary 2.3. Denote Y (y) the convex family of all admissible state density processes
Y ν(y) issued from y, and Y the set of all Y (y). Any Y ν(y) is the product of the market
state price process Y 0 by an exponential martingale Lν(y) whose volatility ν belongs to
R⊥. . The differential decomposition of these three processes is

dY 0
t = Y 0

t [−rt dt− ηRt .dWt], Y 0
0 = 1

dLνt = Lνt [νt.dWt], νt ∈ R⊥t Lν0 = y

dY ν
t = Y ν

t [−rtdt+ (νt − ηRt ).dWt], ν ∈ R⊥t Y ν
0 = y.

(2.3)

Interesting discussions on the links between the state price density processes and the
admissible market numeraire 1/Y 0

t , also called GOP (growth optimal portfolio) can be
found in Geman, El Karoui, Rochet [KGR95], in Heath, Platen [PH06], and in Filipovic,
Platen [FP09]. Besides, the state price density processes are also called "pricing kernels"
since they are useful for evaluating contingent claims under the historical probability
measure P. Not surprisingly, we will focus on them in the application of Section 4 about
the valuation of zero-coupon bond and the modeling of the yield curve.
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2.2 Consistent progressive utility and their characteristics

The preferences of the agents investing in the financial market are modeled by consistent
progressive utility. The sub-cone of admissible wealth processes X , describing the
financial landscape, is considered in this forward setting as a family of test processes. As
in statistical learning, the utility criteria are dynamically adjusted to this given family
of test processes, also called the learning set. The time-coherence is then obtained from
a dynamic decision criterion adjusted progressively over the time to this set X .

More precisely, a progressive utility U is defined as a family of càdlàg adapted pro-
cesses (U(t, x), x ∈ R+) such that P.a.s., for every t ≥ 0, the functions x ∈ R+ 7→
U(t, x, ω) are standard utility functions. As usual, a utility function u is a strictly
concave, strictly increasing, and non-negative function defined on R+, with continu-
ous marginal utility the derivative ux, satisfying the Inada conditions lim

x→∞
ux(x) = 0

and lim
x→0

ux(x) = ∞. The risk aversion coefficient RA(u) is measured by the ratio
RA(u)(x) = −uxx(x)/ux(x) and the relative risk aversion by Rr

A(u)(x) = xRA(u)(x).
The asymptotic elasticity EA(u)(x) = lim sup

x→∞
xux(x)/u(x) is a key parameter in the

optimization problem (see Kramkov [KS99]). As usual, the dual problem is based on the
Fenchel-Legendre convex conjugate transformation ũ(y) of a utility function u, where ũ
satisfies ũ(y) = supx>0

(
u(x)− yx). In particular, ũ(y) ≥ u(x)− yx and the maximum

is attained at ux(x) = y. Under Inada conditions, ũ is twice continuously differen-
tiable, strictly convex, strictly decreasing, with ũ(0+) = u(+∞), ũ(+∞) = u(0+), a.s..
Moreover, the marginal utility ux is the inverse of the opposite of the marginal con-
jugate utility ũy; that is u−1

x (y) = −ũy(y); ũ(y) = u
(
− ũ(y)

)
+ ũy(y) y, and u(x) =

ũ
(
ux(x)

)
+ xux(x).

Throughout the paper, we adopt the convention of small letters for deterministic utili-
ties and capital letters for stochastic utilities.

2.2.1 Characteristics of the consistent progressive utility

The progressive utilities are adjusted to the learning set X . The satisfaction provided
by a test process Xκ ∈X is measured by the dynamic criterion (U(t,Xκ

t )). Since X is
a learning set, there is no satisfaction to invest in the set X , in other words in mean the
future is less preferable than the present. From the mathematical point of view, this is
equivalent to the supermartingale property of the dynamic preference process (U(t,Xκ

t )).
Moreover, to ensure that the stochastic utility (U(t, x)) is optimally adjusted, we make
the additional assumption that the previous supermartingale constraint is binded by
some optimal process κ∗ whose preference criterion (U(t,Xκ∗

t )) is a martingale. This
leads to the following definition of a consistent progressive utility as formulated in the
seminal paper [MZ09].
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Definition 2.4 (Consistent progressive utility). Let U be a progressive utility with
learning set X .
(i) The utility U is said to be X -consistent, if for any admissible test process Xκ ∈X ,
the preference process (U(t,Xκ

t )) is a non-negative supermartingale.
(ii) The consistent utility U is said to be X -strongly consistent if there exists an
optimal process X∗ := Xκ∗ ∈ X , with κ∗t ∈ Rt, binding the constraint, in the sense
that the optimal preference process (U(t,X∗t )) is a martingale.

The value function (U(t, x)) of the classical optimization problem is an example of
strongly X -consistent utility, defined from its terminal condition U(TH , x) = u(x) (see
[KHM17a] for a general discussion between the forward and the backward viewpoints
of utility functions).

The consistency property of the progressive utility U has a natural equivalent for dual
progressive utility, as stated in the following proposition (see [KM13] for the proof).

Proposition 2.5. U is a consistent progressive utility with the class X if and only
if its Fenchel transform Ũ is consistent with the class Y in the sense that Ũ(t, Yt) is
a submartingale for any Y ∈ Y, and there exists some Y ∗ ∈ Y (called dual optimal
process) such that Ũ(t, Y ∗t ) is a martingale. Moreover, the two optimal processes are
related by the main identity Ux(t,X∗t (x)) = Y ∗t (ux(x)).

Rogers provides in [Rog03] a unified (and very simple) approach to get very quickly
a simple heuristic of the main identity Ux(t,X∗t (x)) = Y ∗t (ux(x)), that will be at the
cornerstone of this paper.
Local characteristics of consistent forward utility

The "global" supermartingale property implied by the consistency condition may be
transferred into local conditions on the differential characteristics of the utility process
U. El Karoui and Mrad [KM13] obtained a non linear HJB-SPDE under the gen-
eral assumption that the utility random field U is a "regular" Itô random field with
differential decomposition,

dU(t, x) = β(t, x)dt+ γ(t, x).dWt, (2.4)

where β(t, x) is the drift random field and γ(t, x) is the multivariate diffusion random
field. The regularity assumption recalled in the Appendix, allows in particular to use
the Itô-Ventzel formula and to show that the marginal utility (Ux(t, x)) is also an Itô
random field with local characteristics (βx(t, x), γx(t, x)). We give the main result about
the consistency characterization through a HJB constraint:
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Theorem 2.6 (Consistency). Let U be a "regular utility" 2 and (β, γ) its local char-
acteristics. The utility random field U is strongly consistent with the family of test
processes X = {Xκ, |κ ∈ R} if and only if (a) and (b) holds :

(i) a) The drift random field β satisfies the HJB-constraint, dP× dt.a.s.
β(t, x) = −Ux(t, x)rtx− 1

2 supσ∈R

{
Uxx(t, x)

(
‖σt‖2 + 2σt.

(Ux(t,x)ηRt +γx(t,x)
Uxx(t,x)

))}
.

= −Ux(t, x)xrt + 1
2Uxx(t,x)‖Ux(t, x)ηRt + γRx (t, x))‖2.

= −Ux(t, x)xrt + 1
2Uxx(t, x)‖σ∗(t, x))‖2.

(2.5)
The quantity γRx (t,x)

Ux(t,x) can be interpreted as an "utility risk premium".
b) The stochastic differential equation SDER(σ∗) dX∗t = rtX

∗
t dt+ σ∗(t,X∗t )(dWt + ηRt dt),

σ∗(t, x) = − Ux(t,x)
Uxx(t,x)

(
ηRt + γRx (t,x)

Ux(t,x)

)
= xκ∗(t, x)

(2.6)

admits a strong solution X∗, which is an optimal portfolio in the preference sense.

(ii) In addition, the positive process Ux(t,X∗t (x)) is the optimal dual state price
process Y ∗t (ux(x)), solution of the SDE⊥(ϑ∗,⊥) issued from y = ux(x) dY ∗t = −rtY ∗t dt+

(
ϑ∗,⊥(t, Y ∗t )− ηRt Y ∗t

)
.dWt,

ϑ∗,⊥(t, y) = γ⊥x (t, U−1
x (t, y)) = yν∗,⊥(t, y).

(2.7)

The regularity assumptions on U recalled in the Appendix imply that the coefficients
of the SDEs (2.6) and (2.7) are regular enough to ensure that X∗ and Y ∗ are monotonic
(increasing) with respect to their respective initial condition x and y with range [0,∞]

(see [KM13]). Note that the case of time-decreasing consistent dynamic utilities studied
in [BRT09, MZ10a] corresponds to γ ≡ 0.

2.2.2 Consistent power utility and separability

Power utilities with constant relative risk aversion θ ∈]0, 1[, u(θ)(x) = x1−θ

1−θ are the
standard framework in the economic literature, useful for its simplicity and the easy
interpretation of the parameters. In particular, the parameter θ is the relative risk
aversion coefficient Rr

A(u(θ))(x) = −xu(θ)
xx (x)/u

(θ)
x (x) = θ.

Consistent progressive power utilities U (θ)(t, x) are the product of their initial condi-
tion u(θ)(x) by a coefficient Z(θ)

t . Despite their stochastic structure, their relative risk
aversion coefficients are still constants, Rr

A(U (θ))(t, x) = Rr
A(u)(x) = θ.

The role of the stochastic process Z(θ)
t is to guarantee the market consistency of dy-

namics power utility. Since u(θ)
x (1) = 1, the process Z(θ)

t , we have Z(θ)
t = U

(θ)
x (t, 1).

2 that is U is a K1,δ
loc ∩ C2-semimartingale, see the Appendix and Theorem 5.1 (iv).
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Since U (θ) = Z(θ)
. u(θ), its local characteristics (β(θ), γ(θ)) are proportional to u(θ),

with β(θ)(t, x) = µ
(θ)
t u(θ)(x) and γ(θ)(t, x) = Z

(θ)
t δ

(θ)
t u(θ)(x),

(
µ

(θ)
t , Z

(θ)
t δ

(θ)
t

)
being the

stochastic parameters of the semimartingale Z(θ). Theorem 2.6 characterizes the opti-
mal processes of power progressive utilities.

Proposition 2.7. Let
(
U (θ)(t, x) = Z

(θ)
t u(θ)(x)

)
be a power consistent progressive

utility, (Z
(θ)
t ) being a positive semimartingale with parameters

(
µ

(θ)
t , Z

(θ)
t δ

(θ)
t

)
.

(i) The optimal processes X(∗,θ)
t (x) and Y (∗,θ)

t (y) are linear with respect to their initial
conditions, X(∗,θ)(x) = xX̄(∗,θ) and Y (∗,θ)(x) = yȲ (∗,θ), with dynamics dX̄

(∗,θ)
t = X̄

(∗,θ)
t

[
rt + 1

θ (ηRt + δ
(θ),R
t ).(dWt + ηRt dt)

]
,

dȲ
(∗,θ)
t = Ȳ

(∗,θ)
t

[
− rtdt+ (δ

(θ),⊥
t − ηRt ).dWt

]
.

(2.8)

The coefficient δ(θ),R
t describes how the stochasticity of the utility influences the invest-

ment strategy κ(∗,θ)
t = 1

θ (ηRt + δ
(θ),R
t ).

(ii) The drift of the process (Z
(θ)
t ) is not free, since the consistency condition (equivalent

to the HJB constraint) implies that

− Z
(θ)
t =

[
X̄

(∗,θ)
t

]θ
Ȳ

(∗,θ)
t , and

− µ
(θ)
t = −(1− θ)Z(θ)

t

(
rt + 1

2θ‖η
R
t + δ

(θ),R
t ‖2

)
.

The consistent power utilities are completely specified by the volatility (δ
(θ)
t ) of the dy-

namics coefficient Z(θ)
t .

Proof. (i) By Equation (2.6), the volatility of the optimal processX(∗,θ)
t (x) is linear with

respect to the initial wealth x, σ(∗,θ)(t, x) = x
θ (ηRt +δ

(θ),R
t ). Since the drift is also linear,

the optimal process is linear with respect to the initial wealth, X(∗,θ)(x) = xX̄(∗,θ)

where the dynamics of X̄(∗,θ) is given by Equation (2.8). The dual process Y (∗,θ)
t (y) is

also linear with respect to y, and by Equation (2.7), ϑ(∗,θ)(t, y) = y δ
(θ),⊥
t . Then, the

dynamic of (Ȳ
(∗,θ)
t ) is given by Equation (2.8).

(ii) By the optimality relation, U (θ)
x (t,X(∗,θ)(t, x)) = ux(x)Y

(∗,θ)
t . This property is

equivalent to the HJB constraint on the drift β(θ)(t, x) = µ
(θ)
t u(θ)(x) of the power

utility. A consequence is that Z(θ)
t =

[
X̄

(∗,θ)
t

]θ
Ȳ

(∗,θ)
t . The linearity of the different

processes yields

dZ
(θ)
t = Z

(θ)
t

[
−
(
(1− θ)rt +

1− θ
2θ
‖ηRt + δ

(θ),R
t ‖2

)
dt+ δ

(θ)
t .dWt

]
.

The drift of Z(θ) depends only of the market parameters (rt, η
R
t ) and its volatility

δ
(θ)
t .

Remark 2.1. Power utilities have also the remarkable property to be the only consis-
tent separable progressive utilities U(t, x) = Zt u(x). The HJB equation (2.5) leads to a
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contradiction as soon as the functions φ1 = xux/u and φ2 = xuxx/ux are not constant,
since the HJB constraint on the drift β(t, x) implies that the time function ρZt satisfies
ρZt = −φ1(x) rt + φ1(x)/φ2(x)‖ηRt + δZ,Rt ‖2 for any x. An exception is given by the
case where δZ,Rt = −ηRt and rt = 0. In this case, Zt is an exponential martingale with
volatility ηRt multiplied by an orthogonal exponential martingale with volatility δZ,⊥t .

2.3 Reverse Problem

One remarkable feature proved in [KM13] is that properties given in Theorem 2.6
are in fact necessary and sufficient conditions to reconstruct a consistent progres-
sive utility from two optimal processes X∗ and Y ∗, when these processes are mono-
tonic with respect to their initial condition. This construction relies on the identity
Ux(t,X∗t (x)) = Y ∗t (ux(x)), using monotonicity and regularity of optimal random fields,
and some integrability condition near zero of the initial utility. This is close to the point
of view of Dybvig and Rogers [DR97], where the authors solve the recovery problem
from the observation of one trajectory of the observed wealth process in the Merton
framework, with the additional assumption that the state price density process at ma-
turity is log-normal.

Let us consider two increasing monotonic processes X∗. (x) ∈X (x) and Y ∗. (y) ∈ Y (y),
strong regular solutions of the two SDEs{

dX∗t = rtX
∗
t dt+ σ∗(t,X∗t )(dWt + ηRt )dt, X∗0 = x,

dY ∗t = −rtY ∗t dt+
(
ϑ∗,⊥(t, Y ∗t )− ηRt Y ∗t

)
.dWt, Y ∗0 = y.

(2.9)

The dynamics of X∗ ∈ X is uniquely determined by its diffusion coefficient σ∗ ∈ R;
the corresponding SDE is denoted SDER(σ∗). Similarly the dynamics of Y ∗ ∈ Y is
uniquely determined by its diffusion coefficient ϑ∗,⊥ ∈ R⊥; the corresponding SDE is
denoted SDE⊥(ϑ∗,⊥).

We now give sufficient conditions on the coefficients σ∗(t, x) and ϑ∗,⊥(t, y) which en-
sure on the one hand the monotonicity of the solutions of Equations (2.9) and the
semimartingale decomposition of the random field X ∗ the inverse flow of X∗; and on
the other hand that the random field V defined by V (t, x) := Y ∗t

(
ux
(
X ∗(t, x)

))
is the

derivative of a progressive utility U. The sufficient regularity conditions we state below
are proved in [KM13].

2.3.1 Technical results

In this presentation we clearly favor the SDE point of view for the processes X∗ and
Y ∗. This allows us to use the existing results in SDE’s theory and provide sufficient
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regularity conditions (K0,1
b ∩K

3,δ
loc)

3 on the coefficients to ensure the existence of regular
SDE solutions. Global Lipschitz condition (K0,1

b ) is enough to obtain strong and mono-
tonic solutions whereas the regularity is ensured by the local conditions (Km,δloc ). But
this point of view is not necessary as soon as one starts from non-explosive monotonic
solutions X∗ and Y ∗. We first recall the present version of some results in [KM13].

Proposition 2.8 (Regularity). Let us consider the two stochastic equations SDER(σ∗)

and SDE⊥(ϑ∗,⊥) defined in (2.9) and assume

σ∗ ∈ K0,1
b ∩ K

3,δ
loc, and ϑ∗,⊥ ∈ K0,1

b ∩ K
2,δ
loc for some δ ∈ (0, 1]. (2.10)

(i) Then, the differential equations SDE⊥(ϑ∗,⊥) and SDER(σ∗) admit two regular mono-
tonic solutions Y ∗ and X∗ with different regularity.

− The solution Y ∗ belongs to K2,ε
loc, and its diffusion local characteristic ψ(., y) :=

ϑ∗,⊥(., Y ∗. (y)) is in K2,ε
loc for all ε ∈ [0, δ[.

− The solution X∗ belongs to K3,ε
loc and its diffusion local characteristics φ(., x) :=

σ∗(., X∗. (x)) is in K3,ε
loc for all ε ∈ [0, δ[.

(ii) The range of the maps x 7→ X∗(x) and y 7→ Y ∗(y) is ]0,+∞[. The inverse X ∗ of
X∗ is a semimartingale, unique monotonic solution of the stochastic PDE,{

dX ∗(t, x) = −X ∗x (t, x)
[
σ∗(t, x).(dWt + ηRt dt) + rt xdt] + L̂∗t,x(X )dt

L̂∗t,x := 1
2∂x(‖σ∗(t, x)‖2∂x).

(2.11)

For integrability reasons, we need to control the speed of convergence of X∗ and Y ∗

at 0 and ∞. The following results are standard under Lipschitz conditions, satisfied in
our setting, see [Kun97].

Corollary 2.9. The asymptotic behaviors of X∗ and Y ∗ are similar and well-controlled
in time. The short notation max(ZT (z)) = sup0≤t≤T Z(t, z) is used in the sequel. More
precisely, if Z is one of the two processes X∗ and Y ∗, for any T almost surely, for any
ε ∈ (0, 1), uniformly on [0, T ], the asymptotic limits in ∞ or 0 are, limz→+∞

(
z−(1+ε) max(ZT (z))

)
= 0 and limz→+∞

(
z−ε max(ZT (z))

)
=∞,

limz→0

(
z−ε max(ZT (z))

)
= 0 and limz→0

(
z−(1+ε) max(ZT (z))

)
=∞.

(2.12)

Sometimes, it is more interesting to consider SDE’s solutions as random fields X∗(t, x)

or Y ∗(t, y) with local characteristics φ∗(t, x) = σ∗(t,X∗t (x)) or ψ∗(t, y) = ϑ∗,⊥(t, Y ∗t (y)).
With the random fields point of view, non negativity and monotonicity are not so easy
to prove.

3See the Appendix for the definition of these classes of regularity.
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Corollary 2.10. Let (X∗t (x)) and (Y ∗t (y)) be two monotonic random fields,{
dX∗t (x) = rtX

∗
t (x)dt+ φ∗(t, x)(dWt + ηRt ), X∗0 (x) = x, φ∗(t, x) ∈ R

dY ∗t (y) = −rtY ∗t (y)dt+
(
ψ∗(t, y)− ηRt Y ∗t (y)

)
.dWt, Y ∗0 (y) = y, ψ∗(t, y) ∈ R⊥

(2.13)
and assume that φ∗ ∈ K3,δ

loc, and ψ∗ ∈ K
2,δ
loc for δ ∈ (0, 1]. Then, the random fields X∗

and Y ∗ have the same properties as the processes of Proposition 2.8.

Proof. Using Theorem 5.1 in the Appendix, one deduces that X∗(x) ∈ K3,ε
loc and

Y ∗(y) ∈ K2,ε
loc. Then one show exactly as in [KM13] that the inverse flow X ∗ is a

regular semimartingale.

2.3.2 Main result concerning the reverse problem

Let us consider two random fields, X∗ and Y ∗, solution of the two SDEs (2.9) with
coefficients satisfying the assumptions (2.10) of Proposition 2.8. Their properties are
recalled in Proposition 2.8 and in Corollary 2.9. As denoted previously X ∗ is the inverse
process of X∗ and u is the initial utility.
The main result on the construction of consistent forward utility is obtained in two
stages: the first concerns the properties of the decreasing random field (Ux(t, x) =

Y ∗t (ux(X ∗t (x)))) and of its primitive as semimartingale; the second concerns the X -
consistency of this forward utility and the optimality of the process X∗.

Theorem 2.11 (Utility Characterization). Let us assume that the given initial util-
ity u is of class C3 and ux(x) ∼ x−ξ (ξ < 1) in the neighborhood of x = 0. Under
the assumptions and notations of Proposition 2.8, (X∗t (x)) and (Y ∗t (y)) are the unique
monotonic solutions of the SDEs (2.9). Then
(i) The random field defined by V ∗(t, x) = Y ∗t (ux(X ∗t (x))) is a semimartingale, in-
tegrable in the neighborhood of x = 0, which is the derivative of a progressive utility
U(t, x) (V ∗(t, x) = Ux(t, x)) with regular local characteristics (β(t, x), γ(t, x)) with

γRx (t, x) = −σ∗(t, x)V ∗x (t, x)− V ∗(t, x)ηRt

γ⊥x (t, x) = ϑ∗,⊥(t, V ∗(t, x))

β(t, x) = −V ∗(t, x)x rt + 1
2V
∗
x (t, x)‖σ∗(t, x)‖2.

(2.14)

(ii) By Theorem 2.6, U is strongly consistent with the class X , that is for any X ∈X ,
U(t,Xt) is a supermartingale and martingale for X∗t .

This result is proved in [KM13] in a SDE point of view, therefore we do not reproduce it
here. A similar proof, this time in a random field point of view, is given in the context
of aggregation in Theorem 3.3.
The system (2.14) can be inverted to express the characteristics of optimal processes
in terms of progressive utility characteristics.
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Corollary 2.12. Since X∗ and Y ∗ are optimal, their characteristics (φ∗(t, x)) and
(ψ∗(t, y)) are explicit functionals of the progressive utility U and its derivatives as well
as of its volatility vectors γx along the optimal wealth process. So,

φ∗(t, x) =
∂x[γR(t,X∗t (x)) + U(t,X∗t (x))ηRt

]
∂x[Ux(t,X∗t (x))]

and ψ∗(t, ux(x)) = γ⊥x (t,X∗t (x)). (2.15)

3 Aggregating multi-agents preferences

Consider a group of agents who invest in the financial market according to their own
preferences. In the following, our aim is to characterize a representative agent and his
representative preference for this group. The main question is: is it possible to describe
globally the behavior of all the agents by a single utility stochastic process? How could
we define an aggregate utility taking into account the preferences and the sizes/weights
of each agent? If all agents have the same characteristics/behaviors, then the answer is
obvious. Otherwise, we classify the agents into classes with characteristics represented
by the pair (Uθ,m(dθ)): a consistent progressive utility and a weight.
This framework can be applied at different granularity levels. For example, one may
aggregate each agent individually, that is (Uθ,m(dθ)) corresponds to the characteristics
of one single agent. Or one can aggregate different classes of agents having the same
preferences and the same strategy inside the class (for example θ may be interpreted as
the risk aversion parameter of the class and m(dθ) the proportion of this class among
the whole). One may also aggregate different classes of agents who are in the same
sector but who do not necessarily share the same characteristics, and whose individual
characteristics are not always observable, so that one can not proceed by aggregation
of each agent individually. One alternative is then to rely on a representative utility
Uθ of the sector, that is computed beforehand, using eventually different aggregation
rules. Then the only information at disposal to aggregate the different sectors consists
in this representative utility Uθ of each sector and m(dθ) the relative size/weight of the
sector in the economy. For example, we aggregate the different sectors (commodities,
industrials, financials, etc) of the economy of a given country, whose market trades with
the others countries’ market or exchanges.

3.1 Aggregation of the marginal utilities

3.1.1 Aggregation of the initial utilities

The aggregate initial wealth x of the economy is the sum of the individual wealths: for
each θ, the θ-agent/class starts (at time 0) with a proportion αθ of the initial global
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wealth x so that x =
∫
αθx m(dθ). There are several possible choices4 to aggregate

utilities at time 0. In the standard setting, the individual preferences uθ are "scaled"
into the utilities 1

αθ
uθ(αθx), and the global utility is then the function u(x),

u(x) =

∫
1

αθ
uθ(αθx) m(dθ),

∫
αθm(dθ) = 1. (3.1)

Technical remark. The measure m(dθ) can be a discrete finite measure, in this case

differentiability under the integral sign is straightforward. One may also consider measures

with density with respect to the Lebesgue measure. Then to ensure the 3 times-differentiability

under the integral sign, locally-domination conditions are necessary: we assume that for any

interval I ⊂ R∗+ there exist integrable functions φIk(x, θ) such that |∂kxuθ(x)| ≤ φIk(x, θ), ∀x ∈ I
and for k = 1, 2, 3. In all cases, we can pass to the limits and show lim

x→+∞
ux(x) = 0 and

lim
x→0

ux(x) = +∞. Note that for k = 1, since uθx is by definition decreasing, it follows that for

any x0 ∈ R∗+, 0 ≤ uθx(x) ≤ uθx(x0),∀x ≥ x0, thus it suffices to take φ[x0,+∞[
k (θ) = uθx(x0) and

assume that it is θ-integrable.

Then, from (3.1), the marginal utility ux of the global utility is the sum of the marginal
utilities, in the sense that

ux(x) =

∫
uθx(αθx) m(dθ). (3.2)

The same kind of representation holds also for the inverse function of ux, −ũy, using
the correspondence between the derivatives of the utility and its dual

y =

∫
yθ(y) m(dθ), yθ(y) = uθx(−αθũy(y)), (3.3)

which leads to the remarkable feature that for any θ, ũy(y) = 1
αθ
ũθy(y

θ(y)); this relation
is the dual version of the αθ-repartition of the initial wealth, x = 1

αθ
(αθx).

Observe that the relative risk aversion coefficient Rr
A(u) is a "probabilistic" mixture of

the different risk aversion coefficients,

Rr
A(u)(x) =

−xuxx(x)

ux(x)
=

∫
Rr

A(uθ)(αθx)
uθx(αθx)∫

uθx(αθx) m(dθ)
m(dθ)

bounded if the family of individual risk aversion coefficients Rr
A(uθ)(αθx) is uniformly

bounded in θ.

3.1.2 Aggregation of the optimal processes

Up to the time t, the individuals invest optimally in a portfolio X∗,θ(αθx) with pref-
erences characterized by their consistent progressive utility Uθ. It is then natural to

4Actually, one may choose any deterministic initial utility, as soon as it satisfies sufficient integrability
conditions, as the ones required in Theorem 2.11.
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define the aggregate wealth in the considered economy at any time t, (X∗t ), as the
weighted sum of the individual wealths (X∗,θt ),

X∗t (x) :=

∫
X∗,θt (αθx)m(dθ). (3.4)

Remark that the relative weights evolve stochastically in time and are given by

αθt :=
X∗,θt (αθx)∫

X∗,θt (αθx)m(dθ)
.

Motivated by the construction of the initial utility and of its derivative ux(x) =∫
uθx(αθx) m(dθ) =

∫
yθ(ux(x)) m(dθ), a natural choice is to define Y ∗t (ux(x)) as a

mixture of individual state price processes, which is still an admissible state price pro-
cess issued from ux(x)

Y ∗t (ux(x)) :=

∫
Y ∗,θt (uθx(αθx))m(dθ) =

∫
Y ∗,θt (yθ(ux(x)))m(dθ). (3.5)

Now, the problem is formulated as a reverse problem (Section 2.3) based on the in-
creasing aggregate processes, X∗t (x) and Y ∗t (y). Remark that the consistent utility
is unique as soon as the optimal processes X∗t (x), Y ∗t (y) and the initial utility u are
given. The last difficulty is to study the regularity of those aggregate processes X∗t (x)

and Y ∗t (y) from the regularity of the individual processes X∗,θt (x) and Y ∗,θt (y). Notice
that the aggregation of processes is easier when they are considered as random fields
rather than solutions of SDEs. Also, we use the representation of optimal processes
given in Corollary 2.10 for the processes X∗,θ, Y ∗,θ,{
dX∗,θt (x) = rtX

∗,θ
t (x)dt+ φ∗,θ(t, x)(dWt + ηRt ), X∗,θ0 (x) = x, φ∗(t, x) ∈ R

dY ∗,θt (y) = −rtY ∗,θt (y)dt+
(
ψ∗,θ(t, y)− ηRt Y

∗,θ
t (y)

)
.dWt, Y ∗,θ0 (y) = y, ψ∗(t, y) ∈ R⊥.

Any linear combination of portfolios X∗,θt (αθx) is an admissible portfolio issued from
the linear combination of their initial wealth αθx. The same property is still true for
continuous combination (under some integrability conditions). Then, the aggregate
wealth process X∗. (x) =

∫
X∗,θ. (αθx)m(dθ) is an admissible portfolio in X (x) and{

dX∗t (x) = rtX
∗
t (x)dt+ φ∗(t, x).(dWt + ηRt dt)

φ∗(t, x) :=
∫
φ∗,θ(t, αθx))m(dθ).

(3.6)

By similar arguments, the aggregate dual process Y ∗ is an admissible one, with more
complex dynamics, because of its dependence in ux(x){

dY ∗t (ux(x)) = −rtY ∗t (ux(x))dt+
(
ψ∗(t, ux(x))− Y ∗t (ux(x))ηRt

)
.dWt.

ψ∗(t, ux(x)) :=
∫
ψ∗,θ(t, yθx(ux(x)))m(dθ).
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Since for any θ, X∗,θ and Y ∗,θ are optimal, their characteristics are given in terms of
the volatility vectors γθ of Uθ, which yields

φ∗(t, x) =

∫ ( U θx
U θxx

(γθ,Rx
U θx

+ ηRt
))

(t,X∗,θt (αθx))m(dθ)

ψ∗(t, ux(x)) =

∫
γθ,⊥x (t,X∗,θt (αθx))m(dθ).

3.2 The aggregate utility

The goal from now is to show the existence of dynamic utility U generating X∗ and
Y ∗ as optimal processes. As in the previous section, if U exists, then necessarily the
master identity Ux(t,X∗t (x)) = Y ∗t (ux(x)) has to be satisfied. The problem has a simple
solution in the case of power utilities.

3.2.1 Aggregating power utilities

We come back to the standard example of power utilities and their aggregation, detailed
in Paragraph 2.2.2. We assume in this subsection that not only the initial utility
functions but all the progressive utilities to be aggregated are power utilities with
different risk aversion coefficient.
By definition the initial utility is a mixture of scaled power utilities

u(x) =

∫
1

α(θ)

(α(θ)x)1−θ

1− θ
m(dθ),

which is no longer a power utility. More generally, all utility processes U(θ) are power
utilities with constant relative risk aversion coefficient θ (0 < θ < 1). As recalled in
Paragraph 2.2.2, U (θ)(t, x) = Z

(θ)
t

x1−θ

1−θ for some process Z(θ) and the optimal primal
and dual processes are linear with respect to their initial conditions.

X
∗,(θ)
t (x) = xX̄

∗,(θ)
t , Y

∗,(θ)
t (y) = yȲ

∗,(θ)
t , Z

(θ)
t = Ȳ

∗,(θ)
t (X̄

∗,(θ)
t )θ.

The characterization of the aggregate optimal processes is easy to obtain from the
definition, X∗t (x) = xX̄∗t , X̄∗t =

∫
α(θ)X̄

∗,(θ)
t m(dθ)

Y ∗t (ux(x)) =
∫

(α(θ)x)−θȲ
∗,(θ)
t m(dθ), ux(x) =

∫
(α(θ)x)−θm(dθ).

(3.7)

Remark that whereas the aggregate wealth X∗ is a linear process with respect to its
initial value x, this not true anymore for the aggregate state price density process Y ∗.

The construction of a progressive utility with optimal processes (xX̄∗t , Y
∗
t (y)), based on

the main identity Ux(t, x) = Y ∗t (ux( x
X̄∗t

)), yields easily to the following characterization.
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Proposition 3.1. The marginal utility Ux(t, x) is the deterministic aggregation of the
power marginal progressive utilities with random repartition of the optimal wealth,

Ux(t, x) =

∫
Ȳ
∗,(θ)
t

(α(θ)x

X̄∗t

)−θ
m(dθ) =

∫
U (θ)
x

(
t,
α(θ)X̄

∗,(θ)
t

X̄∗t
x
)
m(dθ). (3.8)

The ratio ᾱ(θ)
t =

α(θ)X̄
∗,(θ)
t

X̄∗t
is the stochastic ratio of the optimal wealths at time t.

As for the Pareto utility in [ILMM13], aggregating power utilities provides a family
of consistent progressive utilities which is more flexible, while benefiting from some
interesting features of power utilities (such as tractability).
Aggregating general consistent utilities is not as straightforward as for power utilities,
and it involves the "reverse problem" techniques detailed previously in Section 2.3.

3.2.2 The general case

The general case will be considered as a reverse problem. Following the results in
Section 2.3, some preliminary technical results are needed.

Lemma 3.2. The optimal processes X∗,θ and Y ∗,θ are assumed to satisfy the regularity
conditions of Theorem 2.11, with the same δ for each θ and with Lipschitz constants
CX,θ and CY,θ satisfying

∫
CX,θm(dθ),

∫
CY,θm(dθ) < ∞. We also assume that for

any interval I ⊂ R∗+ there exist integrable functions φIk(x, θ) such that |∂kxuθ(x)| ≤
φIk(x, θ), ∀x ∈ I and for k = 1, 2, 3. Then,
(i) There exists a constant K, such that for any θ and any x, y > 0, E(X∗,θt (x)) ≤
CX,θKtx and E(Y ∗,θt (y)) ≤ CY,θKty. Consequently, the integrals (3.4) and (3.5) are
well defined.
(ii) The monotonic random fields X∗, defined by (3.6), is ∈ K3,ε

loc for any ε ∈ [0, δ[ and
its inverse flow X ∗ is a semimartingale. Moreover Y ∗ ∈ K2,ε

loc for any ε ∈ [0, δ[.
(iii) As uθx is of class C2(0,∞), ux ∈ C2(0,∞) and the marginal utility process Ux(t, x) =

Y ∗t (ux(X ∗t (x))) is a K2,ε
loc semimartingale for any ε ∈ [0, δ[.

Proof. (i) is a standard result, obtained from Burkholder-Davis-Gundy and the Jensen
inequalities, see [Kun97], Lemmas 4.5.3 and 4.5.5.
(ii) Combining Assumptions of this result with Theorem 5.3 leads to X∗,θ ∈ K3,ε

loc and
Y ∗,θ ∈ K2,ε

loc for any ε ∈ [0, δ[. So σ∗,θ(t,X∗,θ(x)) ∈ K3,ε
loc and ϑ∗,θ(t, Y ∗,θ(y)) ∈ K2,ε

loc.
It follows that φ∗(t, x)(= σ∗(t,X∗t (x))) and ψ∗(t, y) (= ϑ∗(t, Y ∗t (y)) are respectively
in K3,ε

loc and K2,ε
loc. We then conclude as in Corollary 2.10. Statement (iii) becomes

obvious.

These regularity results allow us to consider the problem of consistency of the aggregate
utility as a reverse problem as in Theorem 2.11.
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Theorem 3.3. Under Assumptions of Lemma 3.2, U defined by
U(t, x) =

∫ ∫ x
0 U

θ
x(t,X∗,θt (αθX ∗t (z)))dz m(dθ) is a consistent semimartingale progres-

sive utility. The optimal primal and dual processes are (X∗t (x)) and
(
Y ∗t (ux(x)) =

Ux(t,X∗t (x))
)
and
γRx (t, x) = −Ux(t, x)ηRt − Uxx(t, x)φ∗(t,X ∗(t, x)).

γ⊥x (t, x) = ψ∗(t, ux(X ∗(t, x))).

β(t, x) = −rtxUx(t, x) +
1

2
Uxx(t, x)||φ∗(t,X ∗(t, x))||2.

(3.9)

Since φ∗(t, x) = σ∗(t,X∗t (x)) and ψ∗(t, y) = ϑ∗(t, Y ∗t (y)), it is easy to check the equiv-
alence between the systems (3.9) and (2.14).

Proof. It is a consequence of Theorem 2.11, since X∗ and Y ∗ satisfies respectively the
SDE (2.6) and (2.7) and the regularity conditions are satisfied. We produce here the
proof in this context of aggregation; the proof being still valid in the general setting of
Theorem 2.11. It relies on the identity Y ∗t (ux(x)) = Ux(t,X∗t (x)).
By statement (iii) of previous Lemma, the random field Ux is sufficiently regular to
apply Itô Ventzel’s formula to compute the dynamics of Ux(t,X∗t (x)):

dUx(t,X∗t (x)) =
(
βx(t,X∗t (x)) +

1

2
Uxxx(t,X∗t (x))||φ∗(t, x)||2

)
+ Uxx(t,X∗t (x))(rtX

∗
t (x) + φ∗(t, x))ηRt ) + γxx(t,X∗t (x))φ∗(t, x)

)
dt

+
(
γx(t,X∗t (x)) + Uxx(t,X∗t (x))φ∗(t, x)

)
dWt.

(i) By identification of the diffusion term with the one of

dY ∗t (ux(x)) = −rtY ∗t (ux(x))dt+
(
φ∗(t, ux(x))− Y ∗t (ux(x))ηRt

)
dWt

and by the fact that ψ∗(t, ux(x)) =
∫
ϑ∗,θ(t, Y ∗,θt (uθx(αθx))m(dθ) and ϑ∗,θ(t, Y ∗,θt (uθx(x)) =

γθ,⊥x (t,X∗,θt (x)) it follows that

γx(t, x) + Uxx(t, x)φ∗(t,X ∗(t, x)) = ψ∗(t, ux(X ∗(t, x)))− Ux(t, x)ηRt

or equivalently by projecting on R and R⊥,
γRx (t, x) = −Ux(t, x)ηRt − Uxx(t, x)φ∗(t,X ∗(t, x))

γ⊥x (t, x) = ψ∗(t, ux(X ∗(t, x))) =

∫
γθ,⊥x (t,X∗,θt (αθX ∗t (x)))m(dθ).

(ii) Identifying the drift term, it is also easy to prove that U satisfies the HJB constraint
(2.5). Indeed, using the characterization of σ∗,

γxx(t, x)φ∗(t,X ∗(t, x)) = γRxx(t, x)φ∗(t,X ∗(t, x))

= ∂x
(
Uxx(t, x)φ∗(t,X ∗(t, x)) + Ux(t, x)ηRt

)
φ∗(t,X ∗(t, x)).
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It follows, after arranging the terms and identifying with the drift term of dY ∗,θt (y)

βx(t, x) = ∂x
(
− rtxUx(t, x) +

1

2
Uxx(t, x)||φ∗(t,X ∗(t, x))||2

)
and integrating with respect to x gives the HJB constraint.

3.3 Particular case of a Pareto optimal allocation of the

initial wealth

In this work, given the wealth of each class xθ, we get the aggregate wealth of the given
economy as x =

∫
xθm(dθ). In other words, the αθ are imposed and given by αθ :=

xθ/x. In the literature, the approach is rather the opposite: given the global wealth of
the economy x, the problem is to find the fair allocation of the wealth x between the
different classes such that the allocation is Pareto optimal, that is there are no possible
alternative allocations whose realization would cause every class to gain. The Pareto
optimal allocation is determined by the initial wealths x∗,θ with

∫
x∗,θm(dθ) = x such

that u(x) =
∫
u(x∗,θ)m(dθ) = sup{

∫
u(xθ)m(dθ)|xθ ≥ 0 and

∫
xθm(dθ) = x}. One

important consequence of Pareto optimality is that the optimal pricing kernel Y ∗,θ is
the same for all agents. See for example the paper of Bank and Kramkov [BK15] that
aggregates utilities parameterized by Pareto weights, for a finite number of investors,
or Mrad [KM16a] for a continuum of agents and a general mixture framework. In this
work, the initial repartition of the wealth is assumed to be given a priori, without
reference to any "optimal allocation". The αθ are fixed (at time 0) and correspond to
the initial proportion of the total wealth hold by the θ-class. Therefore the aggregate
utility U and the aggregate pricing kernel Y ∗ are not standard, but they are natural
candidate for aggregating different points of view of several agents, in a context without
an equilibrium. It thus allows a richer class of pricing kernel that will add flexibility to
capture some financial features, such that the impact of the wealth on the valuation of
financial assets.
We choose to illustrate this methodology in measuring its impact on the yield curve.

4 Application to the yield curve

Numerous economic issues involve the optimization of the aggregate utility of the econ-
omy. Besides, among this economic literature involving utility optimization, many
papers focus on long term issues. Therefore the use of stochastic utility is particularly
relevant in such modeling frameworks with long horizon. Besides, since the theoretical
study of progressive utility emphasizes the dependency of the processes with respect to
their initial conditions, this framework is also well adapted to study the dependency
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and the non-linearity of macroeconomic processes with respect to the initial value of
economic indexes.
One particular example developed here consists in the valuation of long term interest
rates of the considered economy (country). Modeling accurately long term interest
rates is a crucial challenge in many financial topics, such as the financing of ecologi-
cal project, or the pricing of longevity-linked securities or any other investment with
long term impact. In the economic setting, the interest are determined endogenously
at equilibrium, from the equilibrium optimal pricing kernel (see for example Vasicek
[Vas77], Cox Ingersoll Ross [CIR85], Björk [Bjo12] and Piazzesi [Pia10]). The financial
settings only assume no arbitrage and with an exogenous short term interest rate, in a
framework of incomplete market.

4.1 Yield curve in incomplete market

In the context of the high illiquidity of the bond market for longer maturities, the
financial evaluation we consider is the marginal utility indifference pricing of zero-
coupon bond. The link with the economic discount rate given by the Ramsey rule (in
an equilibrium setting) is studied in El Karoui et al. [KHM14, KHM17b].

4.1.1 Utility indifference pricing

In incomplete market, for the pricing of non replicable contingent claims, there are
different ways to evaluate the risk coming from the unhedgeable part, yielding to a bid-
ask spread. A way is the pricing by indifference (as in Henderson and Hobson [HH09]).
Utility indifference price of a quantity q of a positive claim ξT delivered in T is the cash
amount (pt(x, q))t∈[0,T ] for which the investor is indifferent from investing or not in the
claim

Uξ(t, x+ pt(x, q), q) = U(t, x), for all t ∈ [0, T ]

with the two following maximization problems (with and without the claim ξT ):

Uξ(t, x, q) := sup(κ,c)∈X c(t,x) E[U(T,Xκ,c
T − q ξT ) +

∫ T
t V (s, cs)ds|Ft],

U(t, x) := sup(κ,c)∈X c(t,x) E[U(T,Xκ,c
T ) +

∫ T
t V (s, cs)ds|Ft], t ≤ T.

When the investors are aware of their sensitivity to the unhedgeable risk, they can
try to transact for only a little amount in the risky contract. In this case, the buyer
wants to transact at the seller’s "fair price" (also called Davis price or marginal utility
price, see Davis [Dav98]), which corresponds to the zero marginal rate of substitution
(π∗t,T (ξT )(y))t∈[0,T ] (with y = Ux(t, x)) determined at any time t by the relationship

∂qUξ(t, x+ π∗t,T (ξT )(y), q)|q=0 = 0, for all t ∈ [0, T ].
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It is given via the dual parametrization

π∗t,T (ξT )(y) = E
[
ξT
Y ∗T (y)

Y ∗t (y)
|Ft
]
, y = Ux(t, x). (4.1)

The marginal utility indifference pricing at time t is not based on the "universal" market
state price density Y 0 (as in complete market), but on the optimal state price density
Y ∗(y) of the progressive dual utility Ũ of U (Proposition 2.5). With this point of view,
the price of some derivative ξT is not given by π0

0,T (ξT ) = E(Y 0
T ξT ), (Y 0

0 = 1), as in a
complete market but by π∗0,T (ξT )(y) = 1

yE(Y ∗T (y) ξT ), making the price depending on
the global wealth x of the economy via the correspondence ux(x) = y. The pricing rule
π0

0,T , that is independent of the wealth, will be called market pricing rule.

Dynamic marginal utility indifference pricing By definition (see (2.3)), any
state price density (Y ∗t (y)) can be written as Y ∗t (y) = Y 0

t L
∗
t (y) with

L∗t (y) := Lν
∗
t (y) = e

∫ t
0 υ
∗,⊥
s (y)dWs− 1

2

∫ t
0 ||υ

∗,⊥
s (y)||2ds. All the dependencies on the wealth

x (or y = ux(x)) is supported by the exponential martingale L∗t (y), normalized by its
value at time 0, and denoted L∗0,t(y) := 1

yL
∗
t (y).

The marginal utility pricing rule becomes the "market pricing" of some modified pay-off
π∗0,T (ξT )(y) = π0

0,T (L∗0,T (y)ξT ). The extension of the pricing rules to any date in the
future is straightforward, using the conditional expectation, and the relative state price
density Y ∗t,T (y) :=

Y ∗T (y)

Y ∗t (y) , so that

π0
t,T (ξT ) = E(Y 0

t,T ξT |Ft) and π∗t,T (ξT )(y) = E(Y ∗t,T (y) ξT |Ft) = π0
t,T (L∗t,T (y)ξT ).

Wealth sensitivity analysis By Corollary 2.2, the volatility of L∗0,t(y) is the regular
volatility random field υ∗,⊥t (y) := ν∗,⊥(t, Y ∗t (y)) = (Y ∗t (y))−1ϑ∗,θt (Y ∗t (y)) and

ln(L∗0,t(y)) =

∫ t

0
υ∗,⊥s (y).dWs −

1

2
‖υ∗,⊥s (y)‖2ds.

Its sensitivity in y is given by

∂yL
∗
0,t(y)

L∗0,t(y)
=

∫ t

0
∂yυ

∗,⊥
s (y).(dWs−υ∗,⊥s (y)ds) =

∫ t

0
∂yυ

∗,⊥
s (y).(dWs+ (ηRs −υ∗,⊥s (y))ds).

The second equality uses the orthogonality of the vectors υ∗,⊥s (y) and ηRs .

The remarkable property is that
∂yL∗0,t(y)

L∗0,t(y) is a martingale under the probability mea-

sure with density martingale Λ∗0,t(y) = exp(
∫ t

0 rsds)Y
∗

0,t(y) whose volatility is the Y ∗-
volatility (−υ∗,⊥s (y) + ηRs ) .

Marginal utility Bond curve Applying the previous theory to the zero-coupon
bond, that delivers one unit of cash at maturity T , we get the market bond price
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B0
t (T ), as well as the indifference bond price B∗t (T, y) that depends on x by the initial

relation y = ux(x)

B0
t (T ) := E

(
Y 0
t,T |Ft

)
, and B∗t (T, y) := E

(
Y ∗t,T (y)|Ft

)
= E

(
Y 0
t,TL

∗
t,T (y)|Ft

)
. (4.2)

a) The sensitivity of the zero-coupon bonds with respect to their maturity is interpreted
in any yield market as a forward rate, that is the instantaneous short rate for an
operation starting in the future at time T . Then, we make the distinction between
market or indifference forward rate

f0
t (T ) := −∂T lnB0

t (T ), respectively, f∗t (T, y) := −∂T lnB∗t (T, y).

The yield curve at current date t is the function,

δ 7→ R∗t (δ, y) := 1
δ

∫ t+δ
t f∗t (u, y)du = −1

δ lnB∗t (t+ δ, y).

b) The sensitivity of the bonds with respect to the initial wealth at the current date t
is

∂yB
∗
t (T, y) = π0

t (∂yL
∗
t,T (y)) = E(Y ∗t,T (y) ξt,T (y)|Ft) (4.3)

where − ξt,T (y) =
∫ T
t ∂yυ

∗,⊥
s (y).(dWs + (ηRs − υ

∗,⊥
s (y))ds). As it is often useful for

financial interpretations (see Geman, El Karoui and Rochet [GEKR95]), relation (4.3)
can be reinterpreted by using a change of probability measure, associated to a numeraire
change,

∂yB
∗
t (T, y) = EQ∗,T

(y)

(
e−

∫ T
t rsds ξt,T (y) | Ft

)
where Q∗,T(y) is the probability measure with density Λ∗0,T (y) and under which dW ∗,Ts =

dWs + (ηRs − υ
∗,⊥
s (y))ds is a martingale. Sometimes this probability measure is called

indifference forward neutral probability.

4.1.2 Yield curve in aggregate economy

We come back to the framework of an economy with multi-agents having access to the
same market, and so having the same market price density Y 0. They have their own
progressive utilities Uθ, and then their own marginal utility pricing rules driven by
their own optimal state price density Y ∗,θt (y) = Y 0

t L
∗,θ
t (y).

Then, each agent gives a different "marginal utility price" for the zero-coupon bonds,
B∗,θt (T, y) = E

(
Y ∗,θt,T (y)|Ft

)
. In particular, the bond curves today B∗,θ0 (T, yθ) are differ-

ent and a priori depend on the individual wealth yθ of the agent; but a large part of
the curve is explained by the common market curve B0

0(T ).

Aggregate yield curves In the aggregate economy, the initial marginal utility is
defined as a mixture of the individual marginal utilities, ux(x) =

∫
uθx(αθx) m(dθ).

Similarly, the optimal state price density Y ∗t (y) is a mixture of the individual optimal
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state prices defined as Y ∗t (y) =
∫
Y ∗,θt (yθ)m(dθ) where yθ(ux(x)) = uθx(αθx).

Thanks to Equation (4.2), the bond curve B∗t (T, y) in the aggregate market satisfies

Y ∗t (y)B∗t (T, y) = E
(
Y ∗T (y)|Ft

)
=

∫
E
(
Y ∗,θT (yθ)|Ft

)
m(dθ) =

∫
B∗,θt (T, y)Y ∗,θt (yθ)m(dθ).

The aggregate bond curve is a mixture of different bond curves with respect to the non
normalized densities Y ∗,θt (yθ), whose integral is by definition Y ∗t (y).
It is easy to take the derivative in maturity in the previous equality, and to use in-
tensively that ∂T B∗t (T, y) = −f∗t (T, y)B∗t (T, y) where f∗t (T, y) is the instantaneous
forward rate in the aggregate market. Thus we obtain that

f∗t (T, y)Y ∗t (y)B∗t (T, y) =

∫
f∗,θt (T, y)Y ∗,θt (yθ)B∗,θt (T, y)m(dθ).

The remarkable feature of these two decompositions is that the non normalized mixing
processes may be chosen to be martingales:

− It is obvious in the case of spot forward rates where the mixing processes are
Y ∗,θt (yθ)B∗,θt (T, yθ) which are by definition the exponential martingales determin-
ing the volatility of the bond.

− For the mixing of the bonds, the non normalized coefficients Y ∗,θt (yθ) = Y 0
t L
∗,θ
t (yθ)

(having the common factor Y 0
t ) can be replaced by the martingales L∗,θt (yθ) with-

out change after renormalization.

All these results are gathered in the next proposition:

Proposition 4.1. In an aggregate economy,
(i) The marginal utility bond curve B∗t (T, y) is a normalized mixture of individual bond
curves, based on the martingales L∗,θt ,

B∗t (T, y) =

∫
B∗,θt (T, yθ)

L∗,θt (yθ)m(dθ)∫
L∗,θt (yθ)m(dθ)

. (4.4)

(ii) The marginal utility spot forward rates f∗t (T, y) is a normalized mixture of individual
spot forward rates curve based on the martingales Y ∗,θt (yθ)B∗,θt (T, yθ)

f∗t (T, y) =

∫
f∗,θt (T, yθ)

B∗,θt (T, yθ)L∗,θt (yθ)∫
B∗,θt (T, yθ)L∗,θt (yθ)m(dθ)

m(dθ). (4.5)

Indifference Bonds pricing for power utilities We come back to the frame-
work of aggregate power utilities, that will be used in the forthcoming numerical appli-
cation in Section 4.2. We consider N agents with consistent power utilities character-
ized by their relative risk aversion parameters θ1 < · · · < θN , as studied in Paragraph
2.2.2. Then, their optimal state prices Y ∗,θt (y) are linear in y with coefficient Ȳ ∗,θt , and
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the individual price of zero-coupon bonds with maturity T does not depend on y and
more generally, B̄∗,θt (T ) = E

(
Ȳ ∗,θt,T |Ft

)
. The aggregate indifference zero-coupon price

B̄∗0(T, y), computed at time 0 for simplicity, is given by

B̄∗0(T, y) =

∑N
i=1 y

θi(y)B̄∗,θi0 (T )

y
=

∑N
i=1(αix)−θiB̄∗,θi0 (T )∑N

i=1(αix)−θi

with y =
∑N

i=1 y
θi(y) = ux(x) and for power utilities, yθi(y) = uθix (αix) = (αix)−θi .

Asymptotic behavior Using the linearity of the optimal state prices Y ∗,θt (yθi) in
yθi and the form of the marginal initial power utilities uθix , the asymptotic behavior
of the aggregate zero-coupon price, for y around 0 (respectively ∞), is straightforward

and relies on the convergence of the random measure
∑N
i=1 y

θi (y) δθi
y towards a dirac

measure that charges the agent with the smallest (respectively the largest) risk aversion
θi. Indeed, scaling the initial wealth x with a factor λ ∈ R+, leads to the following
asymptotics (for λ→ 0 or ∞)

lim
y→0

B∗0(T, y) = Bθ1
0 (T ) and lim

y→+∞
B∗0(T, y) = BθN

0 (T ).

This means that, when the wealth tends to infinity, the aggregate zero-coupon price
converges to the one priced by the less risk averse agent, whereas when the wealth tends
to zero, it converges to the one priced by the more risk averse agent. This is a similar
result as the ones stated in Cvitanic, Jouini et al. [CJMN11].

4.2 Numerical Results

The numerical illustration is developed in the simple model of an economy where three
agents invest in an incomplete market with two independent Brownian motions: the
market is characterized by the market state price density Y 0 with a constant market
risk premium (η, 0) and a stochastic interest rate. The volatility vector of admissible
portfolios only depends on the first component κt = (κ1

t , 0); the optimal dual orthogonal
volatility (0, υ∗,θ) is also assumed to be constant in time and independent of y, where
θ ∈]0, 1[ is the relative risk aversion parameter characterizing the agent starting with a
power utility:

Y ∗,θt (y) = ye−
∫ t
0 rsds e−ηW

1
t +υ∗,θW 2

t −
1
2

(η2+(υ∗,θ)2) t. (4.6)

We also need to specify a model for the spot rate common for all agents. The simplest
and currently used in financial market is the Vasicek model [Vas77].

Vasicek model for the spot rate rt: We assume a Vasicek model for the spot
rate rt,

drt = a(b− rt)dt+ σ1dW
1
t + σ2dW

2
t ,
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which is a Gaussian Ornstein-Uhlenbeck process given by

rt = r0e
−at + b(1− e−at) +

∫ t

0
e−a(t−s)(σ1dW

1
t + σ2dW

2
t ).

The market zero-coupon bond is given from the market state price density Y 0
t , by

B0
t (T ) = E

(
Y 0
t,T | Ft

)
. From Gaussian standard calculus, it is well-known that the

market yield curve R0
t (δ) = −1

δ lnB0
t (t+ δ) has the following form

R0
t (δ) = R0

∞ − (R0
∞ − rt)

(1−e−aδ)
aδ + s2,r

a2
(1−e−aδ)2

4aδ

where R0
∞ = b− 1

2

[
s2,r

a2
+ 2σ1ηa

]
and s2,r = (σ1)2 + (σ2)2.

Indifference Yield Curve In this example, the indifference yield curve is obtained
by multiplication of the market price density (Y 0

t ) by the exponential martingale L∗,θt =

exp
(
υ∗,θW 2

t − 1
2(υ∗,θ)2 t

)
which depends on the Brownian motion W 2 only.

The bonds are obtained as previously, using the probability measure Q⊥,θ = L∗,θT .P in
place of P. Under Q⊥,θ,W 1 is still a Brownian motion butW 2 becomesW 2

t = W 2,⊥,θ
t +

υ∗,θt where W 2,⊥,θ is a Q⊥,θ-Brownian motion. The spot rate rt remains an Ornstein-
Uhlenbeck process under Q⊥,θ, only the level b is modified into b⊥,θ = b+ 1

aσ2υ
∗,θ. This

modification has an impact on the infinite rate, that becomes R∗,θ∞ = R0
∞ + 1

aσ2υ
∗,θ.

The new yield curve is now:{
R∗,θt (δ) = R∗,θ∞ − (R∗,θ∞ − rt) (1−e−aδ)

aδ + s2,r

a2
(1−e−aδ)2

4aδ

R∗,θt (δ) = R0
t (δ)− σ2υ

∗,θ(1−e−aδ−aδ
a2δ

)
.

The same kind of equation holds for the different forward rates. In particular the spread
between the indifference curve and the market curve is given by:

f∗,θt (T )− f0
t (T ) = −σ2υ

∗,θ(1− e−a(T−t)

a

)
.

Agreggate bond curve For the aggregate bond curve, we consider the aggregation
of three agents with power utility and risk aversion parameter (θi) and with a given
initial repartition of the wealth (αi) (see Section 3.2.1). In this case, the zero-coupon
bond is evaluated as

B∗t (T, x, α) =

∑3
i=1(αix)−θiB∗,θit (T )

ux(x)
(4.7)

where x and α stand here to remind that the aggregate price depends on the initial
wealth and on the initial choice of the parameters (αi).
The ratio B∗t (T,x,α)

B0
t (T )

is particularly simple, using the notation ξ2(T−t) = σ2

(1−e−a(T−t)−a(T−t)
a2

)
B∗t (T, x, α)

B0
t (T )

=

∑3
i=1(αix)−θi exp(−ξ2(T − t)υ∗,θi)

ux(x)
=

∑3
i=1 exp(−θi ln(αix)− ξ2(T − t)υ∗,θi)

ux(x)
.
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Simulations The following simulations are provided taking υ∗,θ = θυ∗ for some
given constant υ∗. For any θ, the individual yield curve δ 7→ R∗,θ0 (δ) does not depend on
the wealth and is a Vasicek curve with infinite rate R∗,θ0 (δ) = R0

0(δ)−σ2θυ
∗(1−e−aδ−aδ

a2δ

)
.

In the figures we choose the following numerical values for the parameters

r0 = 5%, a = 1, b = 0.2, σ1 = 20%, σ2 = 15%, η = 20%, υ∗ = 80%.

It provides a standard increasing yield curve, but Vasicek model can also achieve others
forms of curve (not monotonic and with bumps) for other parameters values.
In Figure 1 we draw the individual yield curve R∗,θ0 (δ) of each class (Vasicek yield
curves), for different values of θ.

Figure 1: Individual yield curve R∗,θ0 (δ) for different values of θ

From now on, we will represent only the spreads between the different rate curves and
the market yield curve R0

0(δ), namely R∗,θ0 (δ)−R0
0(δ). Figure 2 represents the spread of

the individual curve for three different values of θ as well as the spread of the aggregate
curve. The spread of the aggregate curve depends on x and the αi, we choose here
x = 10, α1 = 1/8, α2 = 1/2, α3 = 3/8 (unless other numerical values are specified).

Figure 3 (respectively Figure 4) illustrates the sensitivity of the aggregate yield curve
on the initial wealth x available on the market (respectively on the initial proportion
parameters αθ).
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Figure 2: Individual and aggregate yield curve spread

Figure 3: Aggregate yield curve spread depending of the wealth x
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Figure 4: Aggregate yield curve spread depending on the initial proportion parameters α
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5 Appendix

Itô-Ventzel’s formula In this paper we used the Itô-Ventzel formula that gives
the decomposition of the compound random field G(t,Xt) for G(t, x) = G(0, x) +∫ t

0 φ(s, x)ds +
∫ t

0 ψ(s, x).dWs regular enough (see Theorem 5.1 below) and for any Itô
semimartingale X. This decomposition is the sum of three terms: the first one is the
"differential in t" ofG, the second one is the classic Itô’s formula (without differentiation
in time) and the third one is the infinitesimal covariation between the martingale part
of Gx and the martingale part of X, all these terms being taken in Xt.

dG(t,Xt) =
(
φ(t,Xt) dt+ ψ(t,Xt).dWt

)
(5.1)

+
(
Gx(t,Xt)dXt +

1

2
Gxx(t,Xt)d < X,X >t

)
+
(
< ψx(t,Xt)dWt, dXt >

)
.

When G has only finite variation, the formula is reduced to a classic Itô’s formula, since
in this case ψ(t, x) ≡ 0, φ(t,Xt) = ∂tGt(t,Xt).

Different spaces of regular random fields We give here the regularity condi-
tions needed in Theorem 2.11 to characterize a consistent progressive utility from its
optimal processes. These regularity conditions are related to the SDEs’ coefficients..
Let (φ, ψ) be continuous Rk-valued progressive random fields and let m be a non-
negative integer, and δ a number in (0, 1]. We need to control the asymptotic behavior
in 0 and∞ of φ and ψ, and the regularity of their Hölder derivatives (when they exist).
More precisely, let φ ∈ Cm,δ(]0,+∞[) be (m, δ)-times5 continuously differentiable in x
for any t, a.s.
For any subset K ⊂]0,+∞[, we define the family of random (Hölder) K-semi-norms

‖φ‖m:K(t, ω) = supx∈K
‖φ(t,x,ω)‖

x +
∑

1≤j≤m supx∈K ‖∂
j
xφ(t, x, ω)‖

‖ψ‖m,δ:K(t, ω) = ‖ψ‖m:K(t, ω) + sup
x,y∈K

‖∂mx ψ(t, x, ω)− ∂mx ψ(t, y, ω)‖
|x− y|δ

.
(5.2)

When K is all the domain ]0,+∞[, we simply write ‖.‖m(t, ω), or ‖.‖m,δ(t, ω).
Calligraphic notation recalls that these semi-norms are random.
a) Km,δloc (resp. Km,δloc ) denotes the set of all Cm,δ-random fields such that for any compact
K ⊂]0,+∞[, and any T ,

∫ T
0 ‖φ‖m,δ:K(t, ω)dt <∞, (resp.

∫ T
0 ‖ψ‖

2
m,δ:K(t, ω)dt <∞ ).

b) When these different norms are well-defined on the whole space ]0,+∞[, we use the
notations Kmb ,K

m
b or Km,δb ,Km,δb .

5That is φ is m-times continuously differentiable with φ(m) being δ-Hölder
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Differentiability of Itô random fields We discuss the regularity of an Itô semi-
martingale random field

G(t, x) = G(0, x) +

∫ t

0
φ(s, x)ds+

∫ t

0
ψ(s, x).dWs (5.3)

in connection with the regularity of its local characteristics (φ, ψ). An Itô random field
G is said to be a Km,δloc -semimartingale, whenever G(0, x) is of class Cm,δ, BG(t, x) =∫ t

0 φ(s, x)ds is of class Km,δloc , and MG(t, x) =
∫ t

0 ψ(s, x).dWs is of class Km,δloc . As in
Kunita [Kun97], we are concerned with the regularity of G (the regularity of its local
characteristics (φ, ψ) being given) and conversely with the regularity of (φ, ψ) (the
regularity of G being given). Theorem 3.1.2, Theorem 3.1.3 and Theorem 3.3.3 in
[Kun97] give the differential rules (term by term) of the dynamics of an Itô random
field and the minimal condition to apply Itô-Ventzel’s formula.

Theorem 5.1 (Differential Rules). Let δ ∈ (0, 1] and G be an Itô semimartingale ran-
dom field with local characteristics (φ, ψ), G(t, x) = G(0, x)+

∫ t
0 φ(s, x)ds+

∫ t
0 ψ(s, x).dWs

(i) If G is a Km,δloc -semimartingale for some m ≥ 0, its local characteristics (φ, ψ) are
of class Km,εloc ×K

m,ε
loc for any ε < δ, and conversely.

(ii) Conversely, if the local characteristics (φ, ψ) are of class Km,δloc ×K
m,δ
loc , then F is a

Km,εloc -semimartingale for any ε < δ.
(iii) For m ≥ 1, the derivative random field Gx is an Itô random field with local char-
acteristics (φx, ψx), and for m ≥ 2 the Itô-Ventzel formula is applicable.
(iv) Moreover, if G is a K1,δ

loc ∩ C
2-semimartingale, for any Itô process X, G(., X.) is

a continuous Itô semimartingale satisfying the Itô-Ventzel formula (5.1).

Differentiability of SDEs solutions It is well known on the SDE’s theory that
is sufficient (but not necessary) to take a coefficients (µ, σ) ∈ K0,1

b ,K0,1
b to ensure the

existence of monotonic global (non-explosive) solution of SDE(µ, σ) with range [0,∞)

and a good behavior near to zero and infinity (see the discussion in [KM13] or Kunita’s
book [Kun97]). Otherwise, local regularity on SDEs coefficients appears as a kind of
minimal assumption to ensure the regularity of a global solution if there exists.

Definition 5.2. A SDE(µ, σ) is said to be of class Sm,δ if
a) the coefficients (µ, σ) are in the spaces (Km,δloc ,K

m,δ
loc )

b) the maximal solution X is non explosive.

Classical examples of Sm,δ SDEs are given by SDE(µ, σ) when (µ, σ) are in the spaces
(Kmb ,K

m
b ), or even in (K0

b ,K
0
b) ∩ (Km,δloc ,K

m,δ
loc ).

Theorem 5.3 (Flows property of SDE). We consider the SDE(µ, σ)

dXt = µ(t,Xt)dt+ σ(t,Xt).dWt, X0 = x. (5.4)
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Let m ≥ 1, δ ∈ (0, 1] and ε < δ.
(i) Assume uniformly Lipschitz coefficients, that is (µ, σ) ∈ K0,1

b × K
0,1
b . Then, (5.4)

admits a unique strong solution X which is strictly monotonic satisfying X(0) = 0 and
X(+∞) := lim

x→+∞
X(x) = +∞.

(ii) Assume µ ∈ Km,δb and σ ∈ Km,δb .
a) Then the solution X = (Xt(x), x > 0) is a Km,εloc semimartingale the derivatives Xx

and 1/Xx are Km−1,ε
loc -semimartingales. Its inverse X−1 is also of class Cm.

b) The local characteristics of X, λX(t, x) = µ(t,Xt(x)) and θX(t, x) = σ(t,Xt(x))

have only local properties and belong to Km,εloc ×K
m,ε
loc .
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