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Abstract

This paper introduces a new dynamic modelling of the Zero Lower Bound (ZLB) phe-

nomenon based on the notion of Embedded Markov Chain. The model provides (quasi)

closed-form expressions for the term structure of interest rates as well as for the price of

European and Asian type derivatives written on the rates. The model is flexible since the

underlying unobservable factors of the term structure can be specific to either the term

structure in the ZLB regime, or the term structure in the non-ZLB state. These properties

are illustrated numerically.
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1 Introduction

The standard term structure models are usually affine models constructed to avoid arbitrage

opportunities on the fixed income markets and to ensure strictly positive rates. Typical examples
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include the Cox-Ingersoll-Ross model [Cox et al. (1985)] and its multivariate extensions [see e.g.

Dai and Singleton (2000); Ait-Sahalia and Kimmel (2010)]. Their application on series with

observed zero rate [see e.g. Swanson and Williams (2014)] can generate implausible nominal risk

premia [see Kim and Singleton (2012)] and imprecise long term predictions.

Indeed, the strictly positive feature of the nominal short term interest rate in these standard

models is not compatible with the zero (or near zero) rates recently observed in several countries,

since 1996 for the Japanese Government bonds, after the 2008 financial crisis for the U.S. Treasury

bills and more recently in France1. This is the so-called Zero-Lower-Bound (ZLB) phenomenon

for the short term rate.

Despite the importance of this ZLB phenomenon for bond pricing, risk management, or

macroeconomic and monetary policies, and the growing literature on this latter topic2, the dy-

namic modelling of the ZLB phenomenon is still in its infancy. Loosely speaking, three types of

dynamic models have been considered either in continuous, or discrete time.

i) The shadow (short) rate model (SRM) has been initially introduced by Black (1995) and

Rogers (1995), then used in a number of academic papers [see e.g. Kim and Singleton (2012);

Ichiue and Ueno (2013); Swanson and Williams (2014); Imakubo and Nakajima (2015); Chris-

tensen and Rudebusch (2014, 2015)]. The basic idea is the following: a Gaussian affine model is

introduced to define the dynamics of underlying factors Xt, say, usually three factors interpreted

as level, slope and curvature factors. Then a shadow short term interest rate r∗t is defined as a

linear combination r∗t = α′Xt of these factors. In such a Gaussian affine model, the shadow rate

can take positive as well as negative values. Then the observed short term rate is defined3 as

rt = max(r∗t , 0). The SRM does not allow for closed form pricing formula for zero coupon bonds.

ii) An alternative approach has been introduced in Monfort et al. (2017). They show that it

is possible to construct in discrete time purely affine term structure models, that can stay at zero

during endogenous periods. The modelling is based on a limiting case of Autoregressive Gamma

(ARG) process4, called ARG-zero process, used to describe some factor dynamics.

1Japan has been confronted with extremely low rates since the mid-90s, the Federal Reserve lowered its prime
rate (i.e. the federal fund rate) to almost zero in December 2008, the Bank of England in early 2009, and the
German rate is near zero at the beginning of 2012. Zero lower bound has also been observed in the 1930’s in US.
The discussion of strictly negative short term rates observed for France and Germany is out of the scope of this
paper.

2Under near zero rates, the central banks have no room for further monetary easing policy by lowering their
prime rate. The shadow rate model has been applied by Central Banks to find alternative nonstandard monetary
policies [see e.g. Hamilton and Wu (2012); Bauer and Rudebusch (2016); Wu and Xia (2016); Alevskis (2016);
Deutsche Bundesbank (2017)].

3When a central bank pays interest on excess reserves, rt, say, the censored value could be defined as rt =
max(r∗

t , rt). Since rt is generally very small, we set it to rt = 0, as usually done in the literature.
4An ARG process is the exact time discretized Cox-Ingersoll-Ross process [see Gouriéroux and Jasiak (2006)].
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iii) Finally Christensen (2015) has considered a 4-factor model with the first 3 factors for the

level, slope and curvature, and the additional factor to represent the stochastic intensity of exit

from the ZLB state. By taking partly into account the regime switching between the zero and

normal states, this model outperforms the SRM for an identical number of factors5.

However these different modellings do not seem flexible enough. Clearly Christensen’s ap-

proach assumes that the dynamics of level, slope and curvature is the same in the ZLB and the

non ZLB state, and nothing is said about the possibility of reverting to the ZLB after an exit.

In the other two modellings, any underlying factor will have a joint effect on the term structure

in the ZLB state, the term structure in the non-ZLB state, the intensity of exiting the ZLB and

the intensity of entering in the ZLB.

The aim of our paper is to propose a new modelling in which some underlying factors can

be specific to either the term structure in the ZLB state, or specific to the term structure in the

non-ZLB state. The model is based on Markov processes with Embedded Markov Chains (EMC),

which offer closed form expressions of the zero-coupon bond prices and of various interest rate

derivatives, such as swaps, swaptions, and caplets.

The remainder of this paper is organized as follows. In Section 2 we introduce the general

concept of Markov process with Embedded Markov Chain, and show how it can be used to account

for the zero lower bound phenomenon for the short term interest rate. Section 3 discusses the

duration of a spell at the ZLB (resp. in the non-ZLB state) and the total time spent at the

ZLB. Section 4 derives the pricing formulas for the zero-coupon bonds. Section 5 proposes an

estimation strategy. The finite sample properties of the estimators are analyzed by Monte-Carlo

and the method is applied to real data. Section 6 concludes. Proofs are provided in Appendices.

2 The model

2.1 The Markov model with Embedded Markov Chain (EMC)

To define a simple, yet flexible, dynamics of a (multivariate) Markov process (Xt), it is convenient

to introduce an underlying Markov chain (Zt) with finite state space {1, ...,K}, according to the

following causal scheme:

5A switching regime model is also considered in Hördahl and Tristani (2018), but with an unobservable stochas-
tic lower bound. This modelling cannot capture the flatness of rate history during some endogenous spells.
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Xt−1 → Zt → Xt → Zt+1 → Xt+1.

Later on, Xt (resp. Zt) denotes the information included in the current and past values of process

X (resp. Z). For instance, Xt = (Xt, Xt−1, Xt−2, ...).

Then we say that:

Definition 1. The process (Xt) is Markov with EMC (Zt) iif,

i) the conditional distribution of Xt given Zt, Xt−1 depends on the past through Zt only;

ii) the conditional distribution of Zt given Zt−1, Xt−1 depends on the past through Xt−1 only,

By iterated conditioning, it is easily checked that the process (Xt) [resp. (Zt)] is Markov with

respect to its own sequence of information sets Xt−1 (resp. Zt−1).

The joint dynamics of these two processes is defined by:

• the conditional distribution of Zt+1 given Xt, and

• the conditional distribution of Xt+1 given Zt+1.

The first conditional distribution is characterized by the vector β(xt) of the K elementary

conditional probabilities:

βk(xt) = P[Zt+1 = k|Xt = xt], k = 1, ...,K, (2.1)

with βk(xt) > 0, k = 1, ...,K,
∑K
k=1 βk(xt) = 1.

Next, the second conditional distribution is characterized by a set of conditional densities

αk(xt+1) with respect to a common dominating measure µ, say, when Zt+1 = k, for k = 1, ...,K,

with αk(x) ≥ 0, and
∫
αk(x)dµ(x) = 1, for any k = 1, ...,K. They can be stacked in a K−

dimensional vector function α(xt+1).

The transition density of process (Xt) has the form of a mixture with path dependent weights:

f1(xt+1|xt) = β′(xt)α(xt+1), (2.2)

and the transition matrix of the EMC, denoted by Π = (πk,l) = (P[Zt = l|Zt−1 = k]), is equal

to:

Π =
∫
α(x)β′(x)dµ(x), (2.3)
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by applying the Bayes formula. This EMC structure facilitates the nonlinear prediction of the

process (Xt) at any horizon:

Proposition 1 (see also Gouriéroux and Jasiak (2001)). The transition density of the Markov

process (Xt) at horizon h is:

fh(xt+h|xt) = β′(xt)Πh−1α(xt+h). (2.4)

Proof. Indeed we get:

fh(xt+h|xt) =
∫∫

β′(xt)α(xt+1)β′(xt+1) · · ·β′(xt+h−1)α(xt+h)dxt+1 · · · dxt+h−1

= β′(xt)Πh−1α(xt+h)

Π is a transition matrix, that is, this matrix has strictly positive entries and each of its

rows sums up to unity. Thus Π admits 1 as eigenvalue, and by Perron-Frobenius theorem [see

Nummelin (1978)], all the other eigenvalues of Π have a modulus strictly smaller than one. Then

the vector β′(xt)Πh−1 tends to a row vector v′ with strictly positive components, when horizon

h goes to infinity, and v is the unique normalized left eigenvector of Π associated with eigenvalue

1. We deduce the ergodicity of the EMC process:

Proposition 2. The Markov process with EMC defined in Proposition 1 is ergodic and its sta-

tionary density is f(xt) = v′α(xt), where v is the normalized left eigenvector of Π associated with

eigenvalue 1.

2.2 A dynamics with Zero Lower Bound

The Markov process with EMC can be used to model the dynamics of a short term interest

rate with Zero Lower Bound (ZLB). Let us consider the process Xt = (rt, Y ′t )′, where the first

component is the riskfree short term interest rate and the p other components are additional

factors with potential effects on the term structure and on its dynamics. To particularize the

ZLB, we assume that the marginal and conditional distributions of the rate rt are mixtures of

a point mass at zero and of a continuous component on the positive real half-line, whereas the

components of Yt are continuous. Therefore the dominating measure is µ = (δ0 + λ+) ⊗ λp,
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where δ0 denotes the point mass at zero, λ+ and λp are the Lebesgue measures on ]0,∞[ and

]−∞,∞[p, respectively.

The embedded process (Zt) is linked to the interest rate by assuming that Zt = (1rt>0, St),

where St is a state variable with finite state space {1, ..., S}. Thus the Markov chain (Zt) has

K = 2S possible states (0, s), (1, s), s = 1, ..., S, and the causal scheme becomes:

(rt−1, Yt−1) −→ (1rt>0, St) −→ (rt, Yt) −→ (1rt+1>0, St+1) −→ (rt+1, Yt+1). (2.5)

The deterministic relationship between rt and the first component of Zt implies new inter-

pretations of the functions α and β introduced in the previous subsection.

i) Conditional distribution of Zt+1 given Xt.

The definition (2.1) becomes:

β0,s(xt) = P[rt+1 = 0, St+1 = s|Xt = xt], (2.6)

β1,s(xt) = P[rt+1 > 0, St+1 = s|Xt = xt]. (2.7)

These quantities can be stacked into vectors as:

β0(xt) =
(
β0,s(xt)

)
s=1,...,S , β1(xt) =

(
β1,s(xt)

)
s=1,...,S , β(xt) =

(
β′0(xt), β′1(xt)

)′
.

They satisfy the constraint:

β0(xt)′1S + β1(xt)′1S = 1,

where 1S is the S dimensional vector with unitary components. These probabilities can be used

to deduce the probability of being at the ZLB (resp. non-ZLB) in the next period:

p(xt) := P[rt+1 = 0|Xt = xt] =
S∑
s=1

β0,s(xt) = β0(xt)′1S , (2.8)

1− p(xt) := P[rt+1 > 0|Xt = xt] = β1(xt)′1S , (2.9)

as well as the conditional probability distribution of the second regime variable St+1 at the ZLB
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(resp. non-ZLB):

γ0,s(xt) := P[St+1 = s|rt+1 = 0, Xt = xt] = β0,s(xt)
β0(xt)′1S

, s = 1, ..., S, (2.10)

γ1,s(xt) := P[St+1 = s|rt+1 > 0, Xt = xt] = β1,s(xt)
β1(xt)′1S

, s = 1, ..., S. (2.11)

In other words the conditional distribution of Zt+1 given Xt can be equivalently characterized

by β0, β1, or by γ0, γ1 and π. Both characterizations are used later on.

ii) Conditional distribution of Xt+1 given Zt+1.

The conditional densities with respect to µ are now denoted α0,s(xt+1) and α1,s(xt+1) for

Zt+1 = (0, s) and Zt+1 = (1, s), respectively.

Conditional on Zt+1 = (0, s), we know that X1,t+1 = rt+1 = 0; therefore α0s(xt+1) =

1rt+1=0α0,s(0, yt+1), where α0,s(0, yt+1) is the density of Yt+1 given X1,t+1 = rt+1 = 0 and

St+1 = s.

Conditional on Zt+1 = (1, s), α1,s(xt+1) = α1s(rt+1, yt+1) is the joint density of (rt+1, yt+1)

given X1,t+1 = rt+1 > 0 and St+1 = s.

To summarize, the causal chain (2.5) can be written in a more detailed form:

(rt = 0, yt)

(rt > 0, yt)

β0,s(rt, yt)

β1,s(rt, yt)

(1rt+1=0 = 1, St+1 = s)

(1rt+1=0 = 0, St+1 = s)
α1,s(rt+1, yt+1)

α0,s(0, yt+1)
(rt+1 = 0, yt+1)

(rt+1 > 0, yt+1)

β0,s(rt+1, yt+1)

β1,s(rt+1, yt+1)

· · ·

· · ·

In other words we get a two-layer factor model. The first layer is characterized by the discrete

state variable St+1, then the second layer depends on the quantitative factor Yt+1. In the next

section we use the terminology state variable for St+1, factor for Yt+1.

As a consequence, the transition of (rt+1, yt+1) given its past has a density with respect to

measure µ given by:

f(rt+1, yt+1|rt, yt) = β′(rt, yt)α(rt+1, yt+1) = β′0(rt, yt)α0(0, yt+1)1rt+1=0 + β′1(rt, yt)α1(rt+1, yt+1)1rt+1>0,

(2.12)
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where α(xt+1) = (α0(xt)′, α1(xt)′)′. Thus, by Proposition 1, we get:

Corollary 1. The term structure of nonlinear forecasts is:

f(rt+h, yt+h|rt, yt) = β′(rt, yt)Πh−1α(rt+h, yt+h), ∀h ≥ 1,

where Π =
∫
α(r, y)β′(r, y)dµ(r, y)

=

 ∫
α0(0, y)β′0(0, y)dy

∫
α0(0, y)β′1(0, y)dy∫

α1(r, y)β′0(r, y)dµ(r, y)
∫
α1(r, y)β′1(r, y)dµ(r, y)

 :=

Π00 Π01

Π10 Π11

 , (2.13)

is the (2S × 2S) transition matrix of the chain (Zt), and the conditional probability that rt+h is

equal to zero is:

P[rt+h = 0|rt, yt] = β′(rt, yt)Πh−1

1S
0S

 , ∀h ≥ 1. (2.14)

where 0S is the S−dimensional null vector.

The following corollary is a consequence of Proposition 2.

Corollary 2. i) The process (Xt) is stationary and ergodic.

ii) The stationary distribution of the process Xt = (rt, yt) is given by v′α(rt, yt), where v is the

vector of stationary distribution of the Markov chain (Zt), that is the left normalized unitary

eigenvector of Π, defined by v′Π = v′; v′12S = 1. In particular, the marginal probability of

rt = 0 is the sum of the S first components of vector v, that is v′1S.

Example 1. Let us consider the special case where p(xt) = p1, if rt = 0, and p(xt) = p2,

otherwise. Then Π becomes:

Π =

p1Π̃00 (1− p1)Π̃01

p2Π̃10 (1− p2)Π̃11

 , (2.15)

where Π̃i,j , i, j = 0, 1 are lower-dimensional stochastic transition matrices. For instance Π̃00 =∫
α0(0, y)γ′0(0, y)dy. The interpretation of decomposition (2.15) is the following: within a realized

spell at (resp. outside) the ZLB, the posterior dynamics of St is Markov with transition matrix

Π̃00 (resp. Π̃11), whereas the dynamics of the indicator 1rt>0 is a Markov chain with transition

matrix

p1 1− p1

p2 1− p2

. In particular, the serial dependence of the different components of Xt
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mainly depends on the second largest eigenvalue of Π̃00 (resp. Π̃11) while at (resp. outside) the

ZLB. Similarly, Π̃10 (resp. Π̃01) is the transition matrix of (St), when the regime variable 1rt≥0

moves from ZLB (resp. non-ZLB) to non-ZLB (resp. ZLB) state. In the general case, where

p(xt) is not constant, Π̃10 (resp. Π̃01) is no longer the product between a probability and a

transition matrix. However, the interpretation above is still useful in understanding the duration

analysis of the next section.

3 Duration analysis

Let us now focus on the total (stochastic) time spent at the ZLB and on the (stochastic) duration

of a spell at the ZLB (resp. at the non-ZLB state).

3.1 Staying at the Zero Lower Bound

Let us consider a date t at which the short term interest rate is at the ZLB with factor value yt.

The distribution of the residual duration spent at the ZLB before lifting-off is characterized by

the sequence of cumulative survival probabilities:

S00(h, yt) = P[rt+h = rt+h−1 = · · · = rt+1 = 0|rt = 0, Yt = yt], h ≥ 1,

or equivalently by the instantaneous survival probabilities:

p00(h, yt) = P[rt+h = 0|rt+h−1 = · · · = rt = 0, Yt = yt] = S00(h, yt)
S00(h− 1, yt)

, h ≥ 1,

with the convention S00(0, yt) = 1.

The complements to 1 of these instantaneous survival probabilities, that are 1 − p00(h, yt),

are the lift-off probabilities. Note that the available information yt is the information at date t;

this information does not vary with horizon h and the forward lift-off probabilities 1− p00(h, yt)

usually differ from their spot counterparts that are 1 − p00(1, yt+h−1), except when h = 1. In

this latter case, we have: p00(1, yt) = S00(1, yt) = p(0, yt), which is the spot survival probability.

In the following, we call p00(h, yt), where h ≥ 2, the forward instantaneous survival probability,

and we are interested in their term structure.
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Proposition 3. We have,

S00(h, yt) = β′0(0, yt)Πh−1
00 1S , (3.1)

where Π00 is defined in equation (2.13).

Proof. See Appendix 1.1.

As a consequence, the forward instantaneous survival probabilities are equal to:

p00(h, yt) = β′0(0, yt)Πh−1
00 1S

β′0(0, yt)Πh−2
00 1S

= γ′0(0, yt)p(0, yt)Πh−1
00 1S

γ′0(0, yt)p(0, yt)Πh−2
00 1S

= γ′0(0, yt)Πh−1
00 1S

γ′0(0, yt)Πh−2
00 1S

, h ≥ 2. (3.2)

At horizons h ≥ 2, the forward instantaneous survival probabilities depend only on the value of

γ0(0, yt), but not on p(0, yt).

Remark 1. Let us re-consider Example 1 introduced in Section 2. When Π00 = p1Π̃00, Proposi-

tion 3 becomes:

S00(h, yt) = ph−1
1 β′0(0, yt)Π̃h−1

00 1S

= ph−1
1 β′0(0, yt)1S = ph−1

1 p1 = ph1 ,

where we have used the fact that Π̃001S is a transition matrix under the assumptions of Example

1. This result is quite intuitive, since, when the transition probability p1 of the regime variable

1rt>0 is constant, the probability of staying at the ZLB for h consecutive periods is simply ph1 .

3.2 Staying above the Zero Lower Bound

Let us now assume that rt > 0 at a certain date t. To analyse the duration of a spell at strictly

positive rates, we consider the cumulative survival probability:

S11(h, rt, yt) = P[rt+h > 0, rt+h−1 > 0, · · · , rt+1 > 0|rt, yt], h ≥ 1, (3.3)

for rt > 0. These cumulative survival probabilities can also be characterized by a set of forward

instantaneous survival probabilities:

p11(h, rt, yt) = P[rt+h > 0|rt+h−1 > 0, · · · , rt+1 > 0, rt, yt] = S11(h, rt, yt)
S11(h− 1, rt, yt)

, h ≥ 1. (3.4)
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They now depend on the levels of both rt and yt. The following proposition is analogous to

Proposition 3:

Proposition 4. We have:

S11(h, rt, yt) = β′1(rt, yt)Πh−1
11 1S , (3.5)

where Π11 is defined in equation (2.13).

The proof is similar to that of the previous proposition and is omitted. Again, similar as in

Remark 1, under the assumption of Example 1, this proposition reduces to:

S11(h, rt, yt) = ph2 ,

whereas the forward instantaneous survival probabilities are given by:

p11(1, rt, yt) = S11(1, rt, yt) = 1− p(rt, yt), (3.6)

p11(h, rt, yt) = [1− p(rt, yt)]γ′1(rt, yt)Πh−1
11 1S

[1− p(rt, yt)]γ′1(rt, yt)Πh−2
11 1S

= γ′1(rt, yt)Πh−1
11 1S

γ′1(rt, yt)Πh−2
11 1S

, ∀h ≥ 2. (3.7)

The term structures of forward instantaneous survival probabilities p11(h, rt, yt) and p00(h, yt)

are governed by two separate sets of functions γ0(0, yt) and γ1(rt, yt), respectively. This explains

the greater flexibility of our model. For instance in the ARG-zero model [see Monfort et al.

(2017)], these two term structures are driven by a same set of factors.

3.3 Total time spent at the Zero Lower Bound

To find the distribution of the total time spent by the short term interest rate at the ZLB between

t and t+ h, let us introduce the random variable:

D(t, h) := 1rt+1=0 + · · ·+ 1rt+h=0.

This total time takes into account the possibility of several spells during the next h periods.

First, the conditional expectation E[D(t, h)|rt, yt] can be obtained by using directly equation

(2.14):

E[D(t, h)|rt, yt] =
h∑
k=1

P[rt+k = 0|rt, yt] = β′(rt, yt)
h∑
k=1

Πk−1

1S
0S

 . (3.8)
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In particular the long-run average time spent at the ZLB state, i.e. limh∞
1
hE[D(t, h)|rt, yt], is

equal to v′

1S
0S

, where v is defined in Corollary 2.

Next, in order to get the predictive distribution of D(t, h), let us consider the conditional

Laplace transform of D(t, h):

τ(t, h, u) = E[e−uD(t,h)|rt, yt], u > 0.

Proposition 5. For each h ≥ 1, we have:

τ(t, h, u) = β′(rt, yt)Mh−1(u)

exp(−u)1S

1S

 , (3.9)

where the (2S × 2S) matrix function M(u) is given by:

M(u) =
∫

exp(−u1r=0)α(r, y)β′(r, y)dµ(r, y) =

exp(−u)Π00 exp(−u)Π01

Π10 Π11

 .
Proof. See Appendix 1.2.

This result can be used to compute the conditional probability mass function (p.m.f.) of the

discrete variable D(t, h). Indeed, we have:

E[e−uD(t,h)|rt, yt] =
h∑
k=0

e−kuP[D(t, h) = k|rt, yt],

which is a polynomial in e−u. Its coefficients, that are the conditional p.m.f., can be computed by

expanding the RHS of (3.9) in e−u. This can be conducted using a symbolic calculation package

such as Mathematica.

4 Pricing

To analyse the future risk of a portfolio including bonds and/or interest rate derivatives such as

swaps, swaptions, or caplets, it is necessary to model in a coherent way the historical and risk-

neutral dynamics, the latter one being adjusted for risk premia and used for derivative pricing.
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This joint modelling is deduced from the specification of the historical dynamics (see Sections

2-3) and a stochastic discount factor (sdf).

4.1 Risk-neutral dynamics

Let us now specify the sdf. The sdf mt+1 between dates t and t + 1 satisfies the no-arbitrage

condition:

E[mt+1|rt, yt] = exp(−rt). (4.1)

A specification compatible with the above condition is proposed below:

Assumption 1. The sdf is defined by:

mt+1 = exp(−rt)κ(rt+1, yt+1)
E[κ(rt+1, yt+1)|rt, yt]

= exp(−rt)κ(rt+1, yt+1)
β′(rt, yt)

∫
κα

, (4.2)

where κ(rt+1, yt+1) is a positive scalar function and
∫
κα is the abbreviation of the vector

∫
κ(r, y)α(r, y)dµ(r, y).

This specification is constrained since function κ depends on rt+1, yt+1 only, but not on past

values rt, yt. Then the sdf depends on rt+1, yt+1, rt, yt. For instance, one possible parametric

form of the function κ is given by:

κ(rt+1, yt+1) = exp(d1rt+1 + d′2yt+1), (4.3)

where d1 is scalar and d2 has the same dimension as yt. This sdf has the standard exponential

affine form with respect to rt+1, yt+1, with an appropriate path-dependent drift in the log-sdf.

Corollary 3. The risk-neutral conditional density of process (rt, yt) is:

f∗(rt+1, yt+1|rt, yt) = mt+1f(rt+1, yt+1|rt, yt)∫
mt+1f(rt+1, yt+1|rt, yt)dµ(rt+1, yt+1)

(4.4)

= κ(rt+1, yt+1)β′(rt, yt)α(rt+1, yt+1)
β′(rt, yt)

∫
κα

.

Thus, as the historical dynamics, the risk-neutral dynamics of the joint process (rt, yt) can

still be decomposed as:

f∗(rt+1, yt+1|rt, yt) = [β∗(rt, yt)]′α∗(rt+1, yt+1), (4.5)
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with:

α∗i,s(rt+1, yt+1) = κ(rt+1, yt+1)αi,s(rt+1, yt+1)∫
καi,s

, (4.6)

β∗i,s(rt, yt) =
βi,s(rt, yt)

∫
καi,s

β′(rt, yt)
∫
κα

, ∀i = 0, 1, s = 1, ..., S. (4.7)

In representation (4.5), the components of α∗ are still joint densities, whereas β∗ is still a

vector of (risk-neutral) probabilities. Therefore, process (rt, yt) is Markov with EMC under both

the historical and risk-neutral dynamics with the same underlying finite state space.

Let us now write the counterparts of equations (2.6) to (2.11) under the risk-neutral dynamics.

Function β∗ can be written as:

β∗(rt, yt) = (β∗0(rt, yt)′, β∗1(rt, yt)′)′, (4.8)

with: β∗0(rt, yt) = p∗(rt, yt)γ∗0(yt), (4.9)

β∗1(rt, yt) = [1− p∗(rt, yt)]γ∗1 (rt, yt), (4.10)

where the S−dimensional functions γ∗0 and γ∗1 are given by:

γ∗i (rt, yt) = β∗i (rt, yt)
β∗i (rt, yt)′1S

, i = 0, 1. (4.11)

By equation (4.10) we can now plug the historical betas in the expression above to get:

γ∗i,s(rt, yt) =
βi,s(rt, yt)

∫
καi,s∑S

i=1 βi,s(rt, yt)
∫
καi,s

=
γi,s(rt, yt)

∫
καi,s∑S

i=1 γi,s(rt, yt)
∫
καi,s

, i = 0, 1, s = 1, ..., S.

Then the risk-neutral probability p∗ is obtained by summing the S first (resp. last) compo-

nents of function β∗(rt, yt):

p∗(rt, yt) = P∗[rt+1 = 0|rt, yt] =
β′0(rt, yt)

∫
κα0

β′(rt, yt)
∫
κα

=
p(rt, yt)γ′0(rt, yt)

∫
κα0

p(rt, yt)γ′0(rt, yt)
∫
κα0 + [1− p(rt, yt)]γ′1(rt, yt)

∫
κα1

. (4.12)

Similarly, the risk-neutral analogues of survival functions S00(h, yt) and S11(h, rt, yt) are ob-

tained by replacing, in equations (3.1) and (3.5), the functions by their risk-neutral counterparts.
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For instance, we have:

S∗00(h, yt) = P∗[rt+h = · · · = rt+1 = 0|rt = 0, yt] = β∗0
′(yt)(Π∗00)h−1

1S , (4.13)

where

Π∗00 =
∫
α∗0(0, y)β∗0

′(0, y)dy. (4.14)

This risk-neutral probability S00
∗(h, yt) corresponds to the price of an insurance contract pro-

tecting against the event that the short rate stays at the ZLB up to time t+ h (see also Section

4.4 on derivative pricing).

4.2 Bond pricing

Let us denote by B(t, h) the price at t of the riskfree zero-coupon bond with time-to-maturity

h. This price is computed given the information available at time t, i.e. (rt, yt), or equivalently

(rt, yt) by the Markov property. It is given by:

B(t, h) = E[mt+1 · · ·mt+h|rt, yt]. (4.15)

We have the following formula for B(t, h):

Proposition 6. For each h ≥ 1:

B(t, h) = e−rtβ′(rt, yt)
β′(rt, yt)

∫
κα

Mh−1
1

∫
κα, (4.16)

where the (2S × 2S) matrix M1 is given by:

M1 =
∫
e−r

κ(r, y)α(r, y)β′(r, y)
β′(r, y)

∫
κα

dµ(r, y)

Proof. See Appendix 1.3.

Thus, for any t and given factor value (rt, yt), the term structure of interest rate is easily ac-

cessible up through the computation of a time-invariant matrix M1 via Monte-Carlo integration.

For any horizon h, the price B(t, h) depends on the factors through β(rt,yt)
β′(rt,yt)

∫
κα

only. This

vector is linked to the risk-neutral vector of probabilities β∗ by a deterministic linear transfor-

mation: β(rt,yt)
β′(rt,yt)

∫
κα

= Diag(
∫
κα)−1β∗(rt, yt).

15



Thus the dynamic model leads to a closed form formula for the term structure of the zero-

coupon bond prices. The existence of such a formula is important for estimation purpose as

discussed in Section 5.3. It avoids the more complicated approximated computation developed

in other modelings, such as the eigenfunction expansions [Gorovoi and Linetsky (2004)], finite-

difference solutions of partial differential equations [Kim and Singleton (2012)], or intensive

simulations [Christensen and Rudebusch (2014)] in the SRM6.

4.3 Long-term rate

Let us study the long-term asymptotics of the interest rate r(t, h), when h goes to infinity. Since

all the entries of matrix M1 are strictly positive, by Perron-Frobenius theorem, the spectral

radius ρ of M1, that is the largest absolute value of its eigenvalues, corresponds to a simple

eigenvalue and all the other eigenvalues have a modulus strictly smaller than ρ. Thus, when h

goes to infinity, we have:

B(t, h) ∼ ρh−1v1u
′
1, (4.17)

where u1 (resp. v1) is the normalized right (resp. left) eigenvector associated with eigenvalue ρ.

Thus, the long-term zero-coupon yield:

r(t,∞) = − lim
h∞

1
h

logB(t, h),

exists and is equal to − log ρ. This limiting rate is independent of the current state variables

(rt, yt), in particular of the current ZLB or non ZLB state. This result is consistent with the

academic literature, which shows that, under the absence of arbitrage, the long-term interest

rate is either constant, or non-decreasing [see e.g. El Karoui et al. (1997); Dybvig et al. (1998)].

Let us now check that ρ is always strictly smaller than one in our model, or, in other words,

that the long-term interest rate is strictly positive.

Lemma 1. The spectral radius ρ of matrix M1 is strictly smaller than 1.

Proof. See Appendix 1.4.

6The approximation proposed in Krippner (2013) based on the forward rates is not internally consistent, that is
compatible with an arbitrage free model [see also the linearization performed in Wu and Xia (2016) or in Deutsche
Bundesbank (2017)].
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4.4 European and Asian interest rate derivative pricing

The dynamic EMC model is convenient for pricing European derivatives written on the short

term interest rate at any horizon h. We have to compute quantities of the type:

C(t, h, p) = E[mt+1 · · ·mt+hg(rt+h)|rt, yt]

= e−rtβ′(rt, yt)
β′(rt, yt)

∫
κα

Mh−1
1

∫
p(r)κ(r, y)α(r, y)dµ(r, y), (4.18)

where g(rt+h) is the payoff at time t + h. The expression of the zero-coupon price given in

Proposition 6 is a special case of the pricing formula above, in which g is equal to 1.

Let us now consider a path-dependent, Asian-type derivative with pay-off:

g(rt+1)g(rt+2) · · · g(rt+h). (4.19)

The following proposition shows that the pricing of such path-dependent derivatives is as simple

as that of European derivatives.

Proposition 7. The price of the derivative paying (4.19) at time t+ h is:

E[mt+1 · · ·mt+hg(rt+1)g(rt+2) · · · g(rt+h)|rt, yt] = e−rtβ′(rt, yt)
β′(rt, yt)

∫
κα

Mh−1
2 (g)

∫
gκα, (4.20)

where

M2(g) =
∫
e−r

κ(r, y)g(r)α(r, y)β′(r, y)
β′(r, y)

∫
κα

dµ(r, y).

The proof is similar to that of Proposition 6 and is therefore omitted.

In particular, this formula can be used to price any derivative written on the remaining time

to be spent at the ZLB. Indeed, let us consider g(r) = 1r=0, and take a time t such that rt = 0,

then we get:

E[mt+1 · · ·mt+h1rt+1=01rt+2=0 · · ·1rt+h=0|rt = 0, yt] = P∗[rt+h = rt+h−1 = · · · = rt+1 = 0|rt = 0, yt],

which is the risk-neutral survival probability S∗00(h, yt) given in (4.13). Similarly, if we take

g(r) = 1r>0, and a time t such that rt > 0, then we get the expression of S∗11(h, rt, yt).
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5 A constrained specification for implementation

Let us now explain how the EMC modelling can be implemented in practice. We first discuss the

choice of latent factors yt. More precisely, it is important for the interpretation, estimation and

stress purposes to disentangle the factors driving the dynamics under the ZLB and outside the

ZLB regime, respectively. This leads to constrained dynamic specification that also facilitates

statistical inference.

5.1 Separating factors specific to the ZLB and non-ZLB states

Compared with the existing term structure models with ZLB, such as the shadow rate model, or

the affine model based on autoregressive gamma-zero dynamics, the EMC model is much more

flexible. Let us for instance consider a decomposition of yt = (y′0t, y′1t)′ into two subvectors,

introduced to manage the dynamics under (resp. outside) the ZLB state. In other words, we

allow for level, slope,..., factors for each regime, on the contrary to the standard shadow rate

model, in which these factors are defined for the shadow rate and do not depend on the regime

[see e.g. Christensen (2015); Christensen and Rudebusch (2015); Carriero et al. (2015)]. More

precisely, we specify the conditional probabilities β as:

Assumption 2. If rt = 0, then

β(rt, yt) = β(y0t) =

 p(y0t)γ0(y0t)

[1− p(y0t)]γ1(y0t)

 , (5.1)

and, if rt > 0, then

β(rt, yt) = β(rt, y1t) =

 p(rt, y1t)γ0(rt, y1t)

[1− p(rt, y1t)]γ1(rt, y1t)

 . (5.2)

Under this assumption, we can rewrite the causal chain (2.5) according to the value of 1rt .

If rt = 0, we get:
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(rt = 0, yt)

p(y0t)γ0s(y0t)

[1− p(y0t)]γ1s(y0t)

(1rt+1=0 = 1, St+1 = s)

(1rt+1=0 = 0, St+1 = s)
α1,s(rt+1, yt+1)

α0,s(0, yt+1)
(rt+1 = 0, yt+1)

(rt+1 > 0, yt+1)

whereas if if rt > 0, the causal scheme becomes:

(rt > 0, yt)

p(rt, y1t)γ0s(rt, y1t)

[1− p(rt, y1t)]γ1s(rt, y1t)

(1rt+1=0 = 1, St+1 = s)

(1rt+1=0 = 0, St+1 = s)
α1,s(rt+1, yt+1)

α0,s(0, yt+1)
(rt+1 = 0, yt+1)

(rt+1 > 0, yt+1)

A first consequence of this assumption concerns the (direct or indirect observability) of the

factors, when zero-coupon prices (say) are observable. First, the short rate rt is always directly

observable on the market. Then by looking at the pricing formula in Section 4.2, either only y0t

is recoverable from the zero coupon prices (if rt = 0), or only y1t is recoverable (if rt > 0). Thus

the recoverable factors, Ft are given by:

Ft =

 (rt, y′0t)′, if rt = 0,

(rt, y′1t)′, if rt > 0.

Would this impossibility to recover the other component y1t (resp. y0t) in (resp. out of) the

ZLB regime be detrimental for risk analysis? The answer is no. Indeed we have the following

corollary, which is a direct consequence of Assumption 2.

Corollary 4. Under Assumption 2, the recoverable factor (Ft) is itself a Markov process with
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respect to its own history. Moreover the conditional density of factor (rt, yt) is given by:

f(rt+1, yt+1|rt, yt) =

 f(rt+1, yt+1|0, y0t), if rt = 0,

f(rt+1, yt+1|rt, y1t), if rt > 0.
(5.3)

Proof. By applying the causal scheme (2.5), we get under the ZLB regime:

f(0, yt+1|0, yt) = p(y0t)
S∑
s=1

γ0,s(y0,t)α0,s(0, yt+1), (5.4)

f(rt+1, yt+1|0, yt) = [1− p(y0t)]
S∑
s=1

γ1,s(y0,t)α0,s(rt+1, yt+1). (5.5)

Both densities depend on the past through y0t only. A similar result is derived under the non

ZLB regime.

In other words, the unrecoverable components of the factor does not Granger cause the future

value of the recoverable factor.

Let us now consider the risk-neutral conditional densities, for instance in the ZLB regime.

Under Assumption 2, the conditional risk-neutral distributions of the state variable given in (4.7)

becomes:

β∗0,s(0, yt) =
p(y0t)γ0s(y0t)

∫
κα0,s

p(y0t)
∑S
j=1 γ0j(y0t)

∫
κα0,j + [1− p(y0t)]

∑S
j=1 γ1j(y0t)

∫
κα1,j

, (5.6)

β∗1,s(0, yt) =
[1− p(y0t)]γ1s(y0t)

∫
κα1,s

p(y0t)
∑S
j=1 γ0j(y0t)

∫
κα0,j + [1− p(y0t)]

∑S
j=1 γ1j(y0t)

∫
κα1,j

. (5.7)

We deduce the following corollary:

Corollary 5. Under Assumption 2, we get:

If rt = 0:

β∗(rt, yt) = β∗(0, y0t) =

 p∗(y0t)γ∗0 (y0,t)

[1− p∗(y0t)]γ∗1(y0,t)

 ,
and if rt > 0, then:

β∗(rt, yt) = β∗(rt, y1t) =

 p∗(rt, y1t)γ∗0(rt, y1t)

[1− p∗(rt, y1t)]γ∗1 (rt, y1t)

 ,
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where

p∗(y0t) =
p(y0t)

∑S
j=1 γ0j(y0t)

∫
κα0,j

p(y0t)
∑S
j=1 γ0j(y0t)

∫
κα0,j + [1− p(y0t)]

∑S
j=1 γ1j(y0t)

∫
κα1,j

,

γ∗0,s(y0,t) =
γ0s(y0t)

∫
κα0,s∑S

j=1 γ0j(y0t)
∫
κα0,j

, γ∗1,s(y0,t) =
γ1s(y0t)

∫
κα1,s∑S

j=1 γ1j(y0t)
∫
κα1,j

,

and similarly for p∗(rt, y1t), γ∗0,s(rt, y1,t) and γ∗1,s(rt, y1,t).

As a consequence, we get a similar noncausality property for the risk-neutral dynamics, that

is:

f∗(rt+1, yt+1|rt, yt) =

 f∗(rt+1, yt+1|0, y0t), if rt = 0,

f∗(rt+1, yt+1|rt, y1t), if rt > 0.
(5.8)

To summarize we have the following proposition:

Proposition 8. Under Assumption 2, both the historical density forecasts [eq. (2.12)] and the

risk-neutral derivative prices [eq. (4.16)] depend only on y0t in the ZLB state, or only on (rt, y1t)

in the non-ZLB state.

Thus, the unrecoverable factor components provides no extra useful information for forecast-

ing or pricing. For instance, if we are currently at the ZLB, rt is equal to zero, y1t is recovered,

y1t is unrecoverable; at this date the economist is interested in the scenario that the short rate

leaves the ZLB in the next period, in which case, the bond prices quoted at the next period

will depend on rt+1 > 0 and y1,t+1. Nevertheless to predict these future bond prices, it is not

necessary to “filter out” the unobservable factor y1t, as the recoverable process y0t contains all

the sufficient information to forecast y1,t+1 and these future bond prices.

The unrecoverable factor component in our model can be regarded as a kind of unobserved het-

erogeneity. However this unobserved heterogeneity cannot be omitted without loss of generality,

that is, the model is not observationally equivalent to a model without unobserved heterogeneity.

Indeed, the sdf specification in (4.3) depends on all the components of yt. Thus matrix M1 in the

bond pricing formula, as well as the risk-neutral dynamics of the recoverable part depends also

on the dynamics of the unrecoverable factor components, although the conditional distribution

of the unrecoverable factor depends on the recoverable components only.

Remark 2. The noncausality property induced by Assumption 2 does not imply a conditional

independence between the recoverable and unrecoverable factors. Let us for instance consider

the transition (5.4). This conditional density f(0, yt+1|0, yt) cannot be written in general as the
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product of a function of y0,t+1 and a function of y1,t+1. This dependence is due to two effects:

first y0,t+1 and y1,t+1 can be dependent given St+1 = s, for any s. Second, even if they were

independent given St+1, there is the mixture effect of state St+1.

Due to this dependence, even if only y0t is recoverable under the ZLB regime, the observation

of y0t will provide useful information on the unrecoverable y1t.

5.2 A Monte Carlo illustration

In the following, we propose a parametric specification of the model under Assumption 2 and

simulate trajectories of the term structure of interest rates. First, we assume that:

Assumption 3. We have, for any values of rt, yt:

γ0(rt, yt) = γ1(rt, yt) := γ(rt, yt). (5.9)

Let us remind that by definition, for each s = 1, ..., S, we have:

γ0,s(rt, yt) = P[St+1 = s|rt+1 = 0, rt, yt], γ1,s(rt, yt) = P[St+1 = s|rt+1 > 0, rt, yt].

Thus Assumption 3 is equivalent to the independence between the unobservable future regime

St+1 and the other observable future regime variable 1rt+1>0, given rt, yt.

This conditional independence should not be understood as the independence between St+1

and the current regime variable 1rt>0. Instead, the form of function γ(rt, yt) in equation (5.9)

continues to depend on the current state 1rt>0, in the sense that it does not depend on y1t (resp.

y0t) if the short rate is at (resp. outside) the ZLB.

Assumption 4. 1. (Dimension of yt) Factors y0t, y1t are both of dimension S:

y0t = (y0t,0, y0t,1, ..., y0t,S−1)′, y1t = (y1t,0, y1t,1, ..., y1t,S−1)′.

2. (Specification of κ) Function κ in the sdf has the exponential affine form under each regime:

κ(rt, yt) = exp(d′2y0t), if rt = 0, (5.10)
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and

κ(rt, yt) = exp(d1rt + d′2y1t), if rt > 0, (5.11)

3. (Specification of p):

p(0, rt, yt) =


1

1+eλ1+λ2y0t,0 , if rt = 0,
1

1+eλ1+λ2y1t,0+λ3rt if rt > 0.
, (5.12)

where y0t,0 (resp. y1t,0) is the first component of y0t (resp. y1t).

4. (Specification of γ) When rt = 0,

γ(0, y0t) =
( 1

1 +
∑S−1
j=1 e

c1,jy0t,j+c2,j
, ...,

ec1,S−1y0t,S−1+c2,S−1

1 +
∑S−1
j=1 e

c1,jy0t,j+c2,j

)
, (5.13)

and when rt > 0,

γ(rt, y1t) =
( 1

1 +
∑S−1
j=1 e

c3,jrt+c4,jy1t,j+c5,j
, ...,

ec3,S−1rt+c4,S−1y1t,S−1+c5,S−1

1 +
∑S−1
j=1 e

c3,jrt+c4,jy1t,j+c5,j

)
, (5.14)

Thus, we assume that p(rt, yt) and γ(rt, yt) depend on different components of vector yt.

This simplifying assumption is motivated by the duration analysis of Section 3, which shows that

p(rt, yt) and γ(rt, yt) characterize the spot and forward instantaneous survival probability of the

ZLB regime indicator 1rt>0, respectively. The first factor component y0t,0 (resp. y1t,0) drives the

spot instantaneous probability and the other components drive their forward counterparts. We

can also remark that, we can apply to each component of y0t, y1t any affine transformations, and

then change the multiplicative and additive parameters accordingly, without changing the model.

Thus, without loss of generality, we can assume that c1,j = c4,j = 1, c2,j = c5,j = 0, j = 0, ..., S−1.

Finally, let us consider the specification of conditional distributions of components of yt given

the regimes, characterized by conditional densities αj,s, j = 0, 1, s = 1, ..., S.

We make the following assumption:

Assumption 5. Given the state variable St = s,

1. y0t, y1t are (conditionally) independent from rt+1;

2. all the components of y0t and of y1t are independent, normally distributed with unitary
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variance σy and mean (µ0, µ1)j,s satisfying:

µ0,j,s = µ0 + δ0(j + s), ∀s = 1, ...S, j = 1, ..., S − 1,

µ1,j,s = µ1 + δ1(j + s), ∀s = 1, ...S, j = 1, ..., S − 1.

Thus the larger the regime variable St = s, the larger the expected value of each components

of y.

3. if rt+1 > 0, then log rt+1 follows normal distribution with variance σr and mean:

µs = µr,0 + δrs, ∀s = 1, ...S

Thus the set of parameters can be decomposed as:

• 3 parameters characterizing the spot survival probabilities p: λ1, λ2, λ3 ∈ R.

• 10 parameters characterizing the conditional distribution of yt and rt in the different

regimes: µ0,0, µ1,0, µ0, µ1, δ0, δ1, µr, δr, σy, σr.

• S + 1 parameters characterizing the sdf κ: d1 ∈ R, d2 ∈ RS .

• S − 1 parameters characterizing the sequence (c3,j)S−1
j=1 .

Thus the total number of parameters is 2S + 13. For the illustration below, we use a model

with S = 2, i.e. 2S = 4 underlying states, and the dimensions of y0t, y1t both equal to 2. Then

the parametric model contains 17 parameters. Their values have been fixed according to Table

1 below.

Parameter λ1 λ2 λ3 µ0 µ1 δ0 δ1 µr µ0,0
Value −2 0.05

Parameter µ1,0 δr d1 d2,1 d2,2 σr σy c3,1
Value

Table 1: Values of parameters.

In the following Figure 1 we plot a simulated path of the short rate process, accompanied by

its autocorrelation function (ACF).

24



0 20 40 60 80 100

0
2

4
6

8

time

sh
or

t r
at

e

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series  R

Figure 1: Simulated path of the process of short rate as well as the corresponding ACF.

We can see that there are two prolonged periods where the short rate is at the ZLB state.

The next figures provide examples of the term structure of yield rate for two different dates when

the short rate is at the ZLB. In the simulation we have used a model with 2S = 6 different states,

and we can see that the model is quite flexible to allow for three different yield curves.
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Figure 2: Example of an increasing yield curve
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Figure 3: Example of an inversed yield curve
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Figure 4: Example of a humped yield curve
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Figure 5: Example of yield curve when the short rate is at the ZLB.

5.3 Estimation procedure

Let us consider the estimation of the EMC model under Assumptions 1-2. We denote by θ the

vector of parameters that includes the parameters characterizing the historical dynamics and

the sdf (see Section 5.3 for the list of parameters). We assume that, at each date t = 1, ..., T ,

we observe the short term rate rt and S = g other rates corresponding to different maturities,

where g = dim(y0t) = dim(y1t). These other rates are gathered in a vector Rt. From the pricing

subsection 4.2, we know that these rates are deterministic functions of the underlying factors rt

and yt. More precisely,

for a date t in the ZLB regime, rt = 0, we have: Rt = R̃t(y0t, θ), (5.15)

for a date t out of the ZLB regime, rt > 0, we have: Rt = R̃t(rt, y1t, θ). (5.16)

We assume that the additional observed rates are fully informative in the sense that the mappings:

y0t 7→ R̃t(y0t, θ), and y1t 7→ R̃t(rt, y1t, θ),

are one-to-one.

Thus we do not assume that the underlying factors are directly observable, for instance chosen

a priori to correspond to the Asset Purchase Program (APP) holdings7, or to the Long-Term

7Possibly distinguishing the asset-backed securities purchase program and the covered bond purchase program.

27



Refinancing Operation (LTRO) of a Central Bank8. Instead we reconstitute indirectly factor

values from the observed term structure of interest rates only. These dynamic filtered factor

values can then be linked with the policy instruments such as APP or LTRO of a Central Bank.

This estimation approach below is an exact maximum likelihood method appropriate when

the observations are derivative prices [see Pastorello et al. (2000) for the first implementation of

this technique for stochastic volatility models]. It avoids the use of the extended Kalman filter

usually employed in the SRM [Christensen and Rudebusch (2015) or in the ARG-zero model of

Monfort et al. (2017), which usually induces efficiency loss.

We can easily check that under the multinomial logit specification, the pricing functions

in (5.15) are one-to-one. Indeed, the bond price is a linear function of β(rt,yt)
β′(rt,yt)

∫
κα

, where

β(rt, yt) = [p(xt)γ0(xt)′, (1− p(xt))γ′1(xt)]′, or β(rt, yt) = [p(xt)γ0(xt)′, (1− p(xt))γ′0(xt)]′ under

Assumption 3. Thus it is up to a normalization term depending on γ0, a linear function of γ0(xt).

Thus if we observe the price of exactly S different zero-coupon bonds, where S is equal to the

dimension of γ0, then by solving a linear equation, we can recover in a unique way γ0, as well as

the constant. Then the values of y0t (or y1t, depending on the regime can be recovered uniquely.

Finally the normalization constant is uniquely recovered, allowing for the identification of ηt. We

can remark that the whole process only involves linear algebra and elementary functions.

To derive the expression of the likelihood, we proceed in three steps.

Step 1: if all factors were observable, the likelihood function would be:

`∗∗(r, y, θ) =
T∏
t=2

l(rt, yt|rt, yt−1, θ).

This latent likelihood can be decomposed according to the different regime transitions. Let us

denote by Ti,j , i, j = 0, 1, the subsets of dates t, where rt+1 is in regime i and rt is in regime j

(where i = 0 means rt = 0 and i = 1 means rt > 0). We get:

`∗∗(r, y, θ) =
∏
t∈T00

l(rt, yt|rt, yt−1, θ)
∏
t∈T01

l(rt, yt|rt, yt−1, θ)
∏
t∈T10

l(rt, yt|rt, yt−1, θ)
∏
t∈T11

l(rt, yt|rt, yt−1, θ).

(5.17)

Step 2: But only y0t can be recovered in regime 0 and y1t can be recovered in regime 1. Under

the assumption that function β only depends either on y0t or rt, y1t according to the regime, we

8Or to the level and slope factors estimated from a misspecified Gaussian affine model [Carriero et al. (2015)]
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have:

`∗(r, y, θ) =
∏
t∈T00

l(y0t|{rt−1 = 0}, y0,t−1, θ)
∏
t∈T01

l(rt, y1t|{rt−1 = 0}, y0,t−1, θ)

×
∏
t∈T10

l(y0t|{rt−1 > 0}, rt−1, y1,t−1, θ)
∏
t∈T11

l(rt, y1t|{rt−1 > 0}, rt−1, y1,t−1, θ).

(5.18)

Step 3: Finally we have to take into account the fact that the effective factors y0t, t ∈ T01∪T00

and y1t, t ∈ T11∪T10, are not directly observable. They are known through the pricing functions

R̃t that involve unknown parameters. Therefore we introduce the appropriate Jacobian term,

and:

`(r, y, θ) = `∗(r, y, θ)Πt∈T11∪T10

(
det ∂(rt, Rt)

∂(rt, y1t)

)−1
Πt∈T01∪T00

(
det ∂(rt, Rt)

∂(rt, y0t)

)−1
. (5.19)

The maximum likelihood estimator of θ is obtained by maximizing the log-likelihood correspond-

ing to (5.19). Once θ is estimated, the “observable” factor values are deduced by inverting the

relations (5.1)-(5.2), after replacing the unknown parameter values by its maximum likelihood

estimates.

5.4 Estimation on simulated data

6 Conclusion

Appendix 1 Proofs

Appendix 1.1 Proof of Proposition 3.

Let us first write the joint conditional density of rt+h, yt+h, rt+h−1, yt+h−1, · · · , rt+1, yt+1 given

(rt, yt). By the Markov property we have:

`(rt+h, yt+h, rt+h−1, yt+h−1, · · · , rt+1, yt+1|rt = 0, yt)

= β′(rt, yt)α(rt+1, yt+1)β′(rt+1, yt+1)α(rt+2, yt+2) · · ·β′(rt+h−1, yt+h−1)α(rt+h, yt+h).
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When rt = rt+1 = rt+2 = · · · = rt+h = 0, this joint density becomes:

`(0, yt+h, 0, yt+h−1, · · · , 0, yt+1|rt, yt) = β′0(0, yt)α0(0, yt+1)β′0(0, yt+1)α0(0, yt+2) · · ·β′0(0, yt+h−1)α0(0, yt+h).

By integrating out all intermediate variables yt+1, ..., yt+h with respect to dyt+1, ...,dyt+h, we

get the conditional probability:

S00(h, yt) = `(0, 0, · · · , 0|rt = 0, yt) = β′0(0, yt)Πh−1
00 1S .

Appendix 1.2 Proof of Proposition 5

We have:

E[e−uD(t,h)|rt, yt]

= E[exp(−u1rt+1=0 − · · · − u1rt+h=0)|rt, yt] (eq. a.1)

=
∫

exp(−u1rt+1=0 − · · · − u1rt+h=0)`(rt+h, yt+h, rt+h−1, yt+h−1, · · · , rt+1, yt+1|rt, yt)

dµ(rt+1, yt+1)dµ(rt+2, yt+2) · · · dµ(rt+h, yt+h) (eq. a.2)

= β′(rt, yt)
∫

exp(−u1rt+1=0)α(rt+1, yt+1)β′(rt+1, yt+1)α(rt+2, yt+2) exp(−u1rt+2=0)β′(rt+2, yt+2)

· · · × 1rt+h=0dµ(rt+1, yt+1)dµ(rt+2, yt+2) · · · dµ(rt+h, yt+h) (eq. a.3)

= β′(rt, yt)
[ ∫

exp(−u1r=0)α(r, y)β′(r, y)dµ(r, y)
]h−1 ∫

exp(−u1r=0)α(r, y)dµ(r, y) (eq. a.4)

= β′(rt, yt)M(u)h−1

exp(−u)1S

1S

 , (eq. a.5)

where from equation (eq. a.1) to (eq. a.2) we have integrated with respect to the conditional

joint distribution of (rt+1, yt+1, ..., rt+h, yt+h) given (rt, yt).
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Appendix 1.3 Proof of Proposition 6

The proof follows the same principle as the proof of Proposition 5. We have:

B(t, h) = E[mt+1 · · ·mt+h|rt, yt]

= E
[ κ(rt+1, yt+1)
β′(rt, yt)

∫
κα

e−rt × · · · × κ(rt+h, yt+h)
β′(rt+h−1, yt+h−1)

∫
κα

e−rt+h−1 |rt, yt
]

= exp(−rt)β′(rt, yt)
β′(rt, yt)

∫
κα

Mh−1
1

∫
κα.

Appendix 1.4 Proof of Lemma 1

We have:

M1

∫
κα =

∫
exp(−r)

κ(r, y)α(r, y)β′(r, y)
∫
κα

β′(r, y)
∫
κα

dµ(r, y)

=
∫

exp(−r)κ(r, y)α(r, y)dµ(r, y) ≤
∫
κ(r, y)α(r, y)dµ(r, y) =

∫
κα,

where the inequality holds componentwise. More precisely, for the S first components, we have

equality between the two terms, whereas for the other S components, the inequality is strict.

Since all the entries of M1,
∫
κα and M1

∫
κα are positive, we can show that:

M2
1

∫
κα < M1

1

∫
κα,

where the inequalities are strict for each component. Then we can introduce the constant

c = 2Smax
i=1

M1
∫
καi

(M2
1
∫
κα)i

∈ (0, 1),

where (M1
∫
κα)i is the i−th component of vector M1

∫
κα. This constant satisfies, by induction:

Mh+1
1

∫
κα ≤ chM1

∫
κα, ∀h ≥ 1, (eq. a.6)

where the inequalities are again componentwise. On the other hand, asymptotically, each com-

ponent of Mh
1
∫
κ behaves as ρh times a constant, where ρ is the spectral radius9 of M1. By

equation (eq. a.6), we deduce that ρ ≤ c < 1.
9Indeed, matrix M1 has only positive entries. Thus by Perron-Frobenius theorem, its spectral radius is a

simple eigenvalue.
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