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a b s t r a c t 

Although there is a vast empirical literature on cross sectional momentum (CSM) returns, 

there are no known analytical results on their distributional properties due, in part, to the 

mathematical complexity associated with their determination. In this paper, we derive the 

density of CSM returns in analytic form, along with moments of all orders, under the as- 

sumption that underlying asset returns are multivariate normal. The resulting expressions 

are highly non-trivial in general and involve truncated normal distributions. The distribu- 

tion of CSM returns can be formally described as a mixture of the unified skew-normal 

family of distributions. However, if the asset returns are independent, then the density of 

the CSM returns is shown to be a mixture of univariate normals. In order to shed light 

on the general case, we present a detailed analysis of the case of two underlying assets, 

which is shown to explain many of the key features of CSM returns reported in the em- 

pirical literature. 

© 2018 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Momentum based trading strategies rely on the persistence in the relative performances of assets over successive time

periods called the ranking and holding periods respectively. For example, a cross sectional momentum (CSM) strategy, con-

sidered in Jegadeesh and Titman (1993) , sorts the returns from n assets over the ranking period, and constructs a portfolio

over the holding period consisting of an equally weighted long position in the m + best performing assets (“winners”) and

an equally weighted short position in the m − worst performing assets (“losers”). Such strategies have become popular in

practice, due mainly to the fact that they tend to exhibit positive returns. Another reason for their popularity is due to

Carhart (1997) , who pioneered momentum as a key component in the factor based risk analysis of investment returns. 

Since it has been argued that excess returns from momentum based trading strategies would indicate a violation of the

assumption of market efficiency, the returns generated by these strategies have been the subject of considerable empirical

research spanning extensive asset classes, jurisdictions, and investment periods. Various authors, including Jegadeesh and

Titman (1993, 2001) , Asness (1994) and Israel and Moskowitz (2013) , found that momentum strategies are profitable in

US equities markets over different time periods dating back to 1927. Analogous results were found for country equity in-

dices by Richards (1997) , Asness et al. (1997) , Chan et al. (20 0 0) and Hameed and Yuanto (2002) , for emerging markets by

Rouwenhorst (1998) , for exchange rate markets in Okunev and White (2003) and Menkhoff et al. (2012) , for commodities by
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Erb and Harvey (2006) , for futures contracts in Moskowitz et al. (2012) , and in industries by Sefton and Scowcroft (2004) .

Similar results were also found by Asness et al. (2013) and Daniel and Moskowitz (2016) for markets in the European Union,

Japan, United Kingdom and United States, and across asset classes including fixed income, commodities, foreign exchange

and equity from 1972 through 2013. 

In contrast to the extensive literature on the empirical properties of momentum based returns, there are relatively few

that consider the distributional properties of these returns from a theoretical viewpoint, and none of these address the CSM

returns as defined in this paper. Most of the known theoretical results, obtained for example by Lo and MacKinlay (1990) ,

Jegadeesh and Titman (1993) , Lewellen (2002) and Moskowitz et al. (2012) , are concerned only with the expected values and

the first order autocorrelations of the returns from the so-called weighted relative strength strategy in which the portfolio

over the holding period is constructed from all underlying assets weighted, essentially, in proportion to their absolute or

relative returns over the ranking period. 

By assuming that underlying asset returns are Gaussian, we derive in this paper the distribution and the moments of

CSM returns in the general case, and in a number of special cases under which resulting expressions simplify significantly.

Anticipating our results, the densities obtained involve truncated normal distributions, which is a result partially discussed

in Grundy and Martin (2001) Appendix A. The results generalize naturally to arbitrary fixed weight portfolios, albeit with

added complexity in notation. 

The remainder of this paper is organized as follows: Section 2 introduces the notation and the key results on multivariate

normal distributions, and Section 3 provides a mathematically precise definition of CSM returns. Although the expressions

for the CSM return density and moments are quite complex in general, they simplify considerably in the case of two assets

with one winner and one loser, and this special case is examined in detail in Section 4 . Implications of the results in the

2-asset case are considered in Section 5 , where they are used to explain many of the empirical features reported in the

literature. Numerical examples illustrating the different CSM return distributions that can be generated using parameters

estimated from market data are given in Section 6 , the distributional properties of CSM returns in the general case are

derived in Section 7 , and the paper concludes with Section 8 . 

2. Notation and preliminary discussion 

For the convenience of the reader, we introduce in this section the notation that will be used throughout the paper,

and present some preliminary discussion on cross sectional momentum returns to motivate the framework under which we

develop the theory in later sections. 

For any x ∈ R 

n , we will write x i for the i -th coordinate of x , and given y ∈ R 

n write x ≺y if and only if x i < y i for all

1 ≤ i ≤ n . Similarly, given a matrix M ∈ R 

m ×k , we will write M i , j for the ( i , j )-th entry of M , and the transpose of a vector

or a matrix will be denoted by the superscript ′ . The density of an n -dimensional normal distribution, with mean μ and

covariance �, at x ∈ R 

n will be denoted φn ( x ; μ, �) so that 

φn ( x ;μ, �) = 

1 

( 2 π) 
n 
2 | �| 1 2 

e −
1 
2 ( x −μ) ′ �−1 ( x −μ) , (1) 

and for any a ∈ R 

n we define 

�n [ a ;μ, �] = 

∫ 
x ≺ a 

φn ( x ;μ, �) d x , (2) 

where d x = d x 1 , . . . , d x n . In general, given random variables x 1 , . . . , x n , their joint probability density function will be de-

noted f x 1 , ... , x n . 

For any n ∈ N , let S n be the group of permutations of { 1 , 2 , . . . , n } , and given any τ ∈ S n , denote by τi = τ (i ) the image of

1 ≤ i ≤ n under τ , so that, for example, 

S 3 = { (1 2 3) , (1 3 2) , (2 1 3) , (2 3 1) , (3 1 2) , (3 2 1) } . (3) 

We now provide a brief description of CSM returns and some explanation of the relevance of our assumptions. Let l r ∈ N

be the length of the ranking period and l h ∈ N the length of the holding period. Then the construction of a cross sectional

momentum strategy can be described as follows. Firstly, in month t , all underlying assets are ranked and sorted into quan-

tiles, for example quintiles or deciles, based on their returns over the past l r -month ranking period from month t − l r − 1 to

t − 1 . One month is omitted to avoid short-term reversals and similar phenomena. At this time, the top quantile portfolio,

consisting of “winners”, is purchased and the worst performing quantile, consisting of “losers”, is shorted for the l h -month

holding period from month t to t + l h . The two portfolios may be equally weighted, value weighted, or more generally

weighted arbitrarily using fixed weights. 

The problem of determining the distributional properties of the CSM returns can be regarded as a 2-period problem. At

any time t , the first period is the ranking period from t − l r − 1 to t − 1 over which the asset returns are described by the

vector r t , and the second period is the holding period from t + 1 to t + l h over which the corresponding asset returns are

r t+1 . The vector ( r ′ t , r ′ t+1 
) is assumed to be Gaussian, and since we do not make any assumptions on stationarity the joint

distribution of r t and r t+1 is a 2 n -dimensional vector of normal returns with means and variances depending on t and t + 1

as in Assumption 1 . This flexibility means that the exclusion of the one month period from t − 1 to t or the assumption

l r � = l , for example, do not pose any difficulties. 
h 
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However, when we do assume stationarity so that E [ r t ] = E [ r t+1 ] with corresponding restrictions on covariances, the

condition l r = l h needs to be imposed, unless there is a countervailing parametric change. Fortunately, many momentum

strategies are of this form where the length of the ranking and holding periods are equal. In this case, the exclusion of a

period is still consistent with strict stationarity, and since it is assumed that the vector return process is Gaussian this is

equivalent to weak stationarity. 

It should be noted that there is a certain advantage in having full flexibility to choose the lengths of ranking and holding

periods. Certainly, most theoretical time-series models of momentum set the holding period length to one. One exception is

He and Li (2015) who model time-series momentum in a continuous-time framework and allow both ranking and holding

period lengths to be arbitrary. 

3. Cross sectional momentum returns 

We begin this section with a general framework under which to investigate the distribution of cross sectional momen-

tum (CSM) returns, and show how well-known models for asset returns, such as VARMA (p, q ) , are special cases of this

framework. 

Fix 0 < m + , m −, n ∈ N such that m + + m − ≤ n, and for each 1 ≤ i ≤ n denote by r i , t the return on asset i at time t . Let 

r t = (r 1 ,t , . . . , r n,t ) 
′ ∈ R 

n , (4)

and for any τ ∈ S n , where S n is the set of permutations on the set { 1 , 2 , . . . , n } as described in (3) , define 

r τ,m ±,t = 

1 

m + 

m + ∑ 

i =1 

r τi ,t −
1 

m −

m −∑ 

i =1 

r τn −m −+ i ,t ∈ R , (5)

x τi ,t = r τi +1 ,t − r τi ,t ∈ R , 1 ≤ i ≤ n − 1 , (6)

x τ,t = (x τ1 ,t , . . . , x τn −1 ,t ) 
′ ∈ R 

n −1 , (7)

z τ,t = 

(
r τ,m ±,t+1 , x 

′ 
τ,t 

)′ ∈ R 

n . (8)

Note that any given τ ∈ S n defines an ordering, r t,τ1 
> r t,τ2 

> · · · > r t,τn , of the components of r t . So r τ,m ±,t represents the

return on a portfolio where the top m + ranked assets are equally weighted and held long while the bottom m − assets are

equally weighted and held short. The assumption of equal weighting is for notational simplicity only, and not crucial for

the general theoretical results. Note also that x τ , t is defined to allow the ranking of the components of r t corresponding to

τ ∈ S n to be written succinctly as x τ,t ≺ 0 n −1 . 

The next assumption on the distribution of asset returns is made to permit the derivation of explicit expressions for

the distributional properties of CSM returns. It is possible to work under more general assumptions, such as asset returns

being multivariate Student’s t , but this would be at the expense of additional complexity and we limit ourselves to the

multivariate normal case in this paper. 

Assumption 1. The vector ( r ′ 
t+1 

, r ′ t ) ′ has a multivariate normal distribution for all t ∈ N . 

Note that if ( r ′ t+1 , 
′ r t ) ′ satisfies Assumption 1 , then we may write [

r t+1 

r t 

]
∼ N 

([
μt+1 

μt 

]
, 

[
�t +1 ,t +1 �t+1 ,t 

�t ,t +1 �t,t 

])
, (9)

with μu ∈ R 

n , �u, v ∈ R 

n ×n , and �u , u positive definite for u, v ∈ { t, t + 1 } . The next result shows that returns following a

vector autoregressive moving average process, VARMA (p, q ) , satisfy the above assumption. 

Proposition 1. Suppose r t ∼ VARMA (p, q ) , so that 

r t = α + 

p ∑ 

i =1 

A i r t−i + ε t + 

q ∑ 

i =1 

M i ε t−i , (10)

where α ∈ R 

n , A i ∈ R 

n ×n for 1 ≤ i ≤ p , M i ∈ R 

n ×n for 1 ≤ i ≤ q , ε t ∼ N ( 0 n , �) with � ∈ R 

n ×n positive definite for all t ∈ N ,

E [ ε s ε ′ t ] = δs,t � for all s, t ∈ N , and δs , t denotes the Kronecker delta so that 

δs,t = 

{
1 , s = t, 
0 , s � = t. 

If ( r ′ 
0 
, . . . , r ′ 

p−1 
) ′ is multivariate normal and independent of ε t , or the VARMA (p, q ) process satisfies conditions for weak station-

arity, then ( r ′ 
t+1 

, r ′ t ) satisfies Assumption 1 . 
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Proof. This follows from the well-known properties of the VARMA (p, q ) process. �

We now provide a mathematically precise representation of the cross sectional momentum return which was defined

verbally following Eq. (3) . 

Definition 1. The (m + , m −) - cross sectional momentum return , r m ±,t+1 , is defined by 

r m ±,t+1 = 

∑ 

τ∈ S n 
I { x τ,t ≺0 n −1 } r τ,m ±,t+1 , (11) 

where I A , for any subset A ⊂ R 

n , denotes the indicator function on the set A . 

For intuition behind the definition of r m ±,t+1 , note that the components of r t , representing asset returns over the ranking

period, can be arranged in any of the n ! orderings corresponding to the permutations τ ∈ S n . For each such ranking r t,τ1 
>

r t,τ2 
> · · · > r t,τn , the m + winner returns over the holding period are r t+1 ,τ1 

, . . . , r t+1 ,τm + while the m − loser returns are

r t+1 ,τn −m + 1 
, . . . , r t+1 ,τn 

. Equally weighting the returns in the winner and the loser portfolios gives r τ,m ±,t+1 , and since the

ranking of components of r t determined by τ ∈ S n is equivalent to the condition x τ,t ≺ 0 n −1 , summing over all possible

r τ,m ±,t+1 and prefixing by the matching indicator function gives the expression for r m ±,t+1 in (11) . 

For example, if n = 3 , then the distinct rankings of the components of r t ∈ R 

3 partitions R 

3 into regions corresponding

to the six permutations in S 3 , viz. 

R (1 2 3) = { r 1 ,t > r 2 ,t > r 3 ,t } , R (1 3 2) = { r 1 ,t > r 3 ,t > r 2 ,t } , 
R (2 1 3) = { r 2 ,t > r 1 ,t > r 3 ,t } , R (2 3 1) = { r 2 ,t > r 3 ,t > r 1 ,t } , 
R (3 1 2) = { r 3 ,t > r 1 ,t > r 2 ,t } , R (3 2 1) = { r 3 ,t > r 2 ,t > r 1 ,t } . 

Inequalities defining, say, the first region R (1 2 3) is evidently equivalent to the condition 

x (1 2 3) ,t = (r 2 ,t − r 1 ,t , r 3 ,t − r 2 ,t ) ≺ (0 , 0) , 

with remaining regions permitting analogous equivalent definitions in terms of vectors x τ,t ∈ R 

2 defined in (7) . In this way,

the six vectors x τ , t , with τ ∈ S 3 , determine a mutually exclusive and exhaustive covering, {R τ | τ ∈ S 3 } , of R 

3 and allows

r m ±,t+1 to be written in the mathematically precise form (11) . 

Since the expressions for the distributional properties of CSM returns in the general case are quite complex, we begin by

considering the special case of 2 assets in the next section that admits simpler expressions that are easier to interpret. 

4. Special case of two assets 

As alluded to previously, potential computational difficulties associated with practical implementation of the expressions

derived in this paper require some discussion. In particular, looking ahead at Theorem 2 shows that the expression for the

density of CSM returns will consist of (
n 

n − m − − m + , m −, m + 

)
= 

n ! 

(n − m − − m + )! m −! m + ! 

distinct terms in the general case. For the CSM strategy that takes a long position in the top decile and a short position in

the bottom decile from the S&P500 index, this corresponds to 50 0!/(40 0!(50!) 2 ) distinct terms which is very large. However,

in many of the non-equity applications, the number of terms is much smaller. For example, the empirical study of the US

industry return data in Sefton and Scowcroft (2004) correspond to n = 10 , m + = 2 , and m − = 2 and results in 1,260 distinct

terms in the expression for the CSM return density, and the study in Foltice and Langer (2015) correspond to m + = 1 and

m − = 1 in a universe of n stocks giving n (n − 1) distinct terms. In any case, it is shown in Section 6 that the returns

generated by Monte Carlo simulation provide an accurate approximation to the CSM return densities, and is computationally

feasible for practical applications, while analytic expressions enable theoretical investigation of the distributional properties

of CSM returns. 

It is difficult to infer much about the distributional properties of CSM returns in the general case without, for example,

assuming (a) independence between r t and r t+1 , or (b) letting l r or l h become large, or (c) assuming very specific forms for

the means and covariances. These special cases will be considered in detail in Theorems 3, 4 , and Corollary 2 , respectively. In

this section, we consider, in the absence of any simplifying assumptions, the properties of the 2 asset CSM portfolio returns

corresponding to the case n = 2 and m ± = 1 . This special case exhibits many of the key features of general CSM portfolios,

and provides useful insights into their behaviour. 

Throughout this section, we denote by (1 2) ∈ S 2 the identity permutation, and use the notation, following (6) , 

x (1 2) ,u = r 2 ,u − r 1 ,u , μu = μ2 ,u − μ1 ,u , σ 2 
i,u = var ( r i,u ) , 

ρu = 

cov ( r 1 ,u , r 2 ,u ) 

σ1 ,u σ2 ,u 

, ρi, j = 

cov 
(
r i,t , r j,t+1 

)
σi,t σ j,t+1 

, 

ς 

2 
u = σ 2 

1 ,u + σ 2 
2 ,u − 2 ρu σ1 ,u σ2 ,u , 
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ς t ,t +1 = ρ1 , 1 σ1 ,t σ1 ,t+1 + ρ2 , 2 σ2 ,t σ2 ,t+1 − ρ1 , 2 σ1 ,t σ2 ,t+1 − ρ2 , 1 σ2 ,t σ1 ,t+1 , 

� t ,t +1 = 

ς t ,t +1 

ς t ς t+1 

, 

where 1 ≤ i , j ≤ 2 and u ∈ { t, t + 1 } . The main motivation behind these definitions is that in the case of 2 assets, the ordering

of the returns over the ranking period and the CSM return over the holding period, at least up to sign, are determined by

the differences r 2 ,t − r 1 ,t and r 2 ,t+1 − r 1 ,t+1 respectively. In this light, note that μt and μt+1 are the expected values of these

differences in the returns of two assets over ranking and holding periods, and ς 

2 
t and ς 

2 
t+1 

are the corresponding variances.

Moreover, ρ i , j represents the correlation between the asset i return over the ranking period and the asset j return over the

holding period, ς t ,t +1 is the covariance of r 2 ,t − r 1 ,t and r 2 ,t+1 − r 1 ,t+1 , and � t ,t +1 is the corresponding correlation. We begin

by deriving the CSM return density, f r m ±,t+1 
, in a more explicit form. 

Proposition 2. Let n = 2 , m ± = 1 , and suppose ( r ′ t+1 , r 
′ 
t ) 

′ satisfies Assumption 1 . Then 

f r 1 ± ,t+1 
(r) = φ1 

(
r;−μt+1 , ς 

2 
t+1 

)
�1 

[ 
0 ;μt − � t ,t +1 ς t 

ς t+1 
( r + μt+1 ) , ς 

2 
t 

(
1 − � 

2 
t ,t +1 

)] 
+ φ1 

(
r;μt+1 , ς 

2 
t+1 

)
�1 

[ 
0 ;−μt − � t ,t +1 ς t 

ς t+1 
( r − μt+1 ) , ς 

2 
t 

(
1 − � 

2 
t ,t +1 

)] 
. (12)

Proof. Refer to A.8 . �

It follows that the density of r 1 ±,t+1 is essentially a weighted sum of two univariate normals, but with weights depending

on r , which are known to be from the unified skew-normal family of distributions 1 studied in Arellano-Valle and Azzalini

(2006) . It is worth noting that both weights either simultaneously approach 0 or 1 as r → ± ∞ , depending on the sign of

� t ,t +1 . Next we derive the expressions for the first four moments of r 1 ±,t+1 . 

Theorem 1. If n = 2 , m ± = 1 , and ( r ′ t+1 , r 
′ 
t ) 

′ satisfies Assumption 1 , then the first four central moments of r 1 ±,t+1 are as fol-

lows: 

μ1 (r 1 ±,t+1 ) = μt+1 

(
2�1 

[ 
μt 

ς t 

] 
− 1 

)
+ 

2 ς t ,t +1 

ς t 
φ1 

(
μt 

ς t 

)
, 

μ2 (r 1 ±,t+1 ) = μ2 
t+1 + ς 

2 
t+1 , 

μ3 (r 1 ±,t+1 ) = μt+1 

(
μ2 

t+1 + 3 ς 

2 
t+1 

)(
2�1 

[ 
μt 

ς t 

] 
− 1 

)

+ 

2 ς t ,t +1 

(
ς 

2 
t ,t +1 (μ

2 
t − ς 

2 
t ) + 3 ς 

2 
t (ς 

2 
t (μ

2 
t+1 + ς 

2 
t+1 ) − ς t ,t +1 μt μt+1 ) 

)
ς 

5 
t 

φ1 

(
μt 

ς t 

)
, 

μ4 (r 1 ±,t+1 ) = μ4 
t+1 + 6 μ2 

t+1 ς 

2 
t+1 + 3 ς 

4 
t+1 . 

Proof. Refer to A.9 . �

Direct calculation using the moments from Theorem 1 gives the following for the mean, variance, skewness, and the

kurtosis of r 1 ±,t+1 : 

μr 1 ±,t+1 
= μt+1 

(
2�1 

[ 
μt 

ς t 

] 
− 1 

)
+ 

2 ς t ,t +1 

ς t 
φ1 

(
μt 

ς t 

)
, (13)

σ 2 
r 1 ±,t+1 

= ς 

2 
t+1 + 

[
1 − ( 2�1 [ μt /ς t ] − 1 ) 

2 
]
μ2 

t+1 (14)

− 4 ς t ,t +1 φ(μt /ς t ) 

ς 

2 
t 

( ς t μt+1 (2�1 [ μt /ς t ] − 1) + φ1 (μt /ς t ) ς t ,t +1 ) , 

skew r 1 ±,t+1 
= 

8�1 [ μt /ς t ] (�1 [ μt /ς t ] − 1)(2�1 [ μt /ς t ] − 1) μ3 
t+1 

σ 3 
r 1 ±,t+1 

+ 

12 ς t ,t +1 μ
2 
t+1 φ1 (μt /ς t ) 

σ 3 
r 1 ±,t+1 

ς t 

(2�1 [ μt /ς t ] − 1) 2 (15)
1 Refer also to the discussion following Corollary 1 on the relationship between the CSM return density and unified skew-normal densities. 
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Table 1 

Means, covariances, and auto-covariances in the monthly returns for MSFT 

and XOM over the period January 2013 to February 2018. 

Mean Covariance Autocorrelation 

MSFT XOM MSFT XOM 

MSFT 0.024 94 9 0.003666 0.0 0 0366 −0.281551 0.107471 

XOM 0.003033 0.0 0 0366 0.001717 −0.004105 −0.199592 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ 

6 ς 

2 
t ,t +1 μt+1 φ1 (μt /ς t ) 

σ 3 
r 1 ±,t+1 

ς 

3 
t 

( 4 ς t φ1 (μt /ς t )(2�1 [ μt /ς t ] − 1) − μt ) 

+ 

2 ς 

3 
t ,t +1 φ1 (μt /ς t ) 

σ 3 
r 1 ±,t+1 

ς 

5 
t 

(
ς 

2 
t (8 φ2 

1 (μt /ς t ) − 1) + μ2 
t 

)
, 

kurt r 1 ±,t+1 
= 

μ4 
t+1 + 6 μ2 

t+1 ς 

2 
t+1 + 3 ς 

4 
t+1 

σ 4 
r 1 ±,t+1 

. (16) 

In particular, these expressions imply that if expected returns μt and μt+1 are positive, and autocorrelation ρt ,t +1 is also

positive, then μr 1 ±,t+1 
> μt+1 so that the CSM portfolio provides higher return than simply holding the asset with higher

expected return long and the asset with lower expected return short. A somewhat unexpected result is that unlike other

quantities, kurt r 1 ±,t+1 
is independent of the CSM autocorrelation term � t ,t +1 . Economic implications of these expressions are

discussed in the next section. 

However, before concluding this section, we provide a brief discussion of the case where n = 3 and m + = m − = 1 . In

this case, we would order the returns of the three assets over the ranking period, then take a long position in the asset

with the highest return and short the one with the lowest return. As we see from (3) , and the formula at the start of this

section, the CSM return density will comprise of six terms in comparison to the two in (12) . Moreover, each of these six

terms is a product of a univariate density and a bivariate integral, as opposed to the latter being a univariate integral in

(12) . Already, similar intuitive analyses in this case are not immediately available, but we note that the CSM return density

is still a weighted sum of univariate densities but, again, with weights depending on r . Fixed weights will only occur in

special cases, for example when r t and r t+1 are independent. These results in full generality are presented in Section 7 . 

5. Empirical implications 

In this section, we apply the results from the previous section to explain some of the stylized features of CSM returns

reported in the empirical literature, and in order to do this analytically, we restrict to the tractable 2-asset case. Firstly, we

note that μr 1 ±,t+1 
is increasing in self-autocorrelations, ρ1, 1 and ρ2, 2 , and decreasing in cross lagged correlations ρ1, 2 and

ρ2, 1 , often referred to as time-series momentum, as can be seen from (13) . This result is consistent with the discussion

in Moskowitz et al. (2012) p241. Furthermore, our result allows for the possibility that μr 1 ±,t+1 
may be positive when cross

lagged correlations are negative, a result attributed to Lewellen (2002) . Next, we show that the reversal in the expected CSM

return with increasing holding period length can be accommodated by our results. 

Proposition 3. Let μ̄t+1 = μt+1 /l h and ς̄ t+1 = ς t+1 /l h , where l h is the length of the holding period. If (2�1 (μt /ς t ) − 1) ̄μt+1 <

0 and � t ,t + t > 0 , then the expected CSM return, μr 1 ±,t+1 
, increases with holding period length for small l h and decreases for large

l h with turning point occurring at 

l  h = 

� 

2 
t ,t + t φ

2 
1 (μt /ς t ) ̄ς 

2 
t+1 

(2�1 (μt /ς t ) − 1) 2 μ̄2 
t+1 

. (17) 

Proof. Refer to A.10 . �

So, if there is a reversal in the ordering of returns from the ranking period to the holding period, and the autocorrelation,

� t ,t + t , is positive, then a reversal in the expected CSM return will occur. This is a pattern observed by many authors, with a

turning point occurring at around 12 months, reported for example in Table 1 by Sefton and Scowcroft (2004) . 

As observed, inter alia , in Ramchmand and Susmel (2007) , Longing and Solnik (2001) , Ang and Bekaert (2002) , Ang and

Chen (2002) and Sancetta and Satchell (2007) , a well-documented feature in market crashes is that the contemporaneous

correlations tend to 1, so that in the 2-asset case ρt+1 → 1 . We shall explore the implications of this to skewness and kur-

tosis, and see if these implications are consistent with the empirical literature on momentum return crashes. In particular,

Daniel and Moskowitz (2016) find that momentum strategies with negative skewness and large kurtosis tend to crash. 

Analytically, we note from the expression for skew r 1 ±,t+1 
in (15) that as ρt+1 → 1 , the variance, ς 

2 
t+1 

, of r 2 ,t+1 − r 1 ,t+1 

will decrease which, ceteris paribus , will increase the magnitude of the skewness of CSM returns. If the skewness is already

negative, it will become more negative as ρt+1 → 1 , consistent with the findings in Daniel and Moskowitz (2016) . We note

that changes to ρt+1 do not affect the numerators of the terms that appear in the expression for the skewness in (15) . 
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Fig. 1. Skewness of the CSM returns as a function of asset correlation in the holding period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, we consider a numerical example using the parameters estimated from monthly returns on Microsoft (MSFT) and

Exxon Mobil (XOM) from January 2013 to February 2018. The stationary means, covariances, and autocorrelations for the

two assets are shown in Table 1 . The impact on skewness of ρt+1 → 1 , which occurs in the event of a market crash, is

shown in Fig. 1 . All parameters other than the asset correlation, ρt+1 , in the holding period were kept fixed at values shown

in Table 1 , and ρt+1 was varied from −0 . 95 to 0.95. The figure shows that the skewness of CSM return, which is negative

in this case, becomes more pronounced as ρt+1 → 1 . In terms of economic intuition, Sancetta and Satchell (2007) present

a theory linking increases in market volatility to increases in ρt+1 by assuming that returns follow a Sharpe 1-factor model

with uncorrelated errors. Combined with our above discussion, this suggests that increases in market volatility can lead to

increased negative skewness in CSM returns, which is a result familiar to practitioners. 

We now consider the properties of kurtosis in the limiting cases as ς t+1 → 0 which correspond to σ1 ,t+1 = σ2 ,t+1 and

ρt+1 → 1 , and ς t+1 → ∞ which corresponds to σ1 ,t+1 , σ2 ,t+1 → ∞ and | ρt+1 | < 1 . 

Proposition 4. Let n = 2 , and suppose σ1 ,t+1 = σ2 ,t+1 . Then the kurtosis given in (16) satisfies the following: 

lim 

ρt+1 → 1 
kurt r 1 ±,t+1 

= 

1 

16�2 
1 [ μt /ς t ] ( 1 − �1 [ μt /ς t ] ) 

2 
. (18)

Proof. Refer to A.11 . �

It is interesting to note from (18) that the CSM return distribution can exhibit both mesokurtosis and leptokurtosis, for

example, as μt → 0 and μt → ± ∞ respectively. 

Moreover, in a market crash situation under the assumptions of Proposition 4 , we see that kurtosis can become arbitrarily

large if μ1, t � = μ2, t since the denominator of kurt r 1 ±,t+1 
tends to zero as ρt → 1. It is interesting to note also that 

lim 

ς t+1 → 0 
kurt r 1 ±,t+1 

= 

3 

1 − 4 � 

2 
t ,t + t φ

2 
1 
(μt /ς t ) 

≥ 3 

1 − 2 � 

2 
t ,t + t /π

, (19)

so that r 1 ±,t+1 is leptokurtic in general as ς t+1 → ∞ , and the leptokurtosis increases as ς t → ∞ . That is, the distribution of

r 1 ±,t+1 becomes progressively more leptokurtic with increasing asset volatility. This is consistent with existing literature on

volatility dependence of CSM returns reported, for example, in Wang and Xu (2015) . 

In order to tie our theoretical implications with empirical observations, we consider the CSM returns based on the Fama-

French “10 Portfolios Formed on Momentum” data over the period January 1927 to December 2017. CSM portfolios were

constructed using the top and bottom deciles from this data, which can be considered as a special case with n = 10 and

m ± = 1 in our framework, and the mean, standard deviation, skewness and the excess kurtosis computed from the resulting

portfolio returns over various periods are shown in Table 2 . Consistent with findings reported in the empirical literature,

CSM portfolios provide a small positive expected return over all periods considered. 2 It is interesting to note that skewness

is negative for all periods, indicating that this may be a characteristic feature of CSM returns, and that skewness is more

negative in periods with significant financial turmoil such as the the Great Depression (contained in period 1927–1957) and

the Global Financial Crisis (contained in period 1988–2017), which is consistent with our theoretical implications. Moreover,

the data show that CSM returns are highly leptokurtic in general, and leptokurtosis is higher in periods of significant market

uncertainty, which is, once again, consistent with our theoretical implications. Similar results, viz. negative skewness and

leptokurtosis, were also found on a much smaller scale from forming CSM portfolios with n = 3 and m ± = 1 using returns

on Microsoft (MSFT), Exxon Mobil (XOM), and General Electric (GE) over the period April 1986 to February 2018. 
2 It should be noted that the periods considered were quite long with each being approximately 30 years in length. 



232 O. Kwon, S. Satchell / Journal of Economic Dynamics & Control 94 (2018) 225–241 

Table 2 

Mean, standard deviation, skewness and excess kurtosis on CSM returns computed 

using the Fama-French “10 Portfolios Formed on Momentum” data from January 

1927 to December 2017. All periods in the table begin in January and end in De- 

cember. 

Period 1927 – 1957 1958 – 1987 1988 – 2017 1927 – 2017 

Mean 0.0053 0.0128 0.0064 0.0081 

Standard dev. 0.1006 0.0473 0.0705 0.0763 

Skewness −4.3015 −1.3551 −2.9045 −4.2553 

32.20 0 0 6.2651 19.4015 39.0622 

Fig. 2. Densities of 2-asset CSM returns with holding period fixed at 1 month and ranking period ranging from 1 month to 24 months. Returns over all 

holding periods were normalized to represent monthly returns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, although we would expect that analogous explicit expressions for the mean, variance, skewness and kurtosis are

not readily available in the general case, the empirical results examined in this section should generalize given that the

broad structure of the CSM return density and its moments remain unchanged. 

6. Numerical examples 

We begin this section by examining the different shapes of CSM return densities that can be obtained by considering the

impact of increasing either the ranking or the holding period while keeping the other fixed. To ensure realistic parameter

values, we use the stationary means, covariances, and autocorrelations for Microsoft and Exxon Mobil from Table 1 . 

In Fig. 2 , the holding period was set to 1 month and the ranking period varied from 1 month to 24 months. It shows that

the CSM return density is approximately normal and becomes progressively more normal with increasing ranking period. In

Fig. 3 , the ranking period was set to 1 month while the holding period was varied from 1 month to 24 months, and shows

that the CSM return density is approximately normal for short holding periods, but progressively becomes more skewed and

bimodal with increasing holding period. It will be established, in Theorem 4 , that both of these observations are consistent

with the theoretical framework of this paper. Although the former case, where the ranking period is longer relative to the

holding period, is more common in practice, the latter is equivalent to a situation where there is a sharp divergence in

expected returns from ranking to holding periods, and serves to illustrate some of the interesting shapes for CSM return

densities that can arise. Since the CSM return density is effectively a sum of univariate skew-normal densities, 3 when the

means of the component densities are sufficiently displaced relative to their standard deviations, the resulting combined

density will be bimodal, and multimodal in general. 

As discussed in Section 4 , it will follow from Theorem 2 that the analytic expression for CSM return density becomes

computationally infeasible as the number of assets, n , becomes large, and so we demonstrate a computationally efficient

method for computing the densities using Monte Carlo simulation. A comparison of the densities, computed analytically

and by Monte Carlo simulation, in the case of the 2-asset example with Microsoft and Exxon Mobil with 1 month ranking

period and 24 month holding period is shown in Fig. 4 . Monte Carlo simulation used 262,143 paths and the time taken was

approximately 79.7 ms on a PC with Core i5-4750 CPU @ 3.20 GHz and 8 GB of RAM. As the figure shows, the density ob-

tained from simulation closely mirrors the analytical counterpart, and could be used for computing densities and moments

in practical situations. 
3 Refer to the discussion following Corollary 1 on the relationship between CSM return density and unified skew-normal densities. 
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Fig. 3. Densities of 2-asset CSM returns with ranking period fixed at 1 month and holding period ranging from 1 month to 24 months. Returns over all 

holding periods were normalized to represent monthly returns. 

Fig. 4. Comparison of analytical and Monte Carlo densities for 2 assets. Solid curve is the analytic density, and the curve traced out by ◦ is the density 

computed by Monte Carlo. 

 

 

 

 

 

 

 

7. Distribution of CSM returns in the general case 

In this section, we derive the distributional properties of CSM returns in the general case. We begin with a theorem

that expresses the density of CSM returns, based on m + equally weighted long positions and m − equally weighted short

positions from a universe of n assets, as the sum over the permutations in S n of terms that are essentially the product of

a univariate normal density function and an (n − 1) -dimensional cumulative normal distribution function. As noted earlier,

this could be generalized to two arbitrary fixed-weight portfolios each of whose weights add up to one. 

For any τ ∈ S n , let P τ ∈ R 

n ×n be the permutation matrix corresponding to τ , and let D n −1 ∈ R 

(n −1) ×n be the matrix defined

by 

D n −1 = 

⎡ 

⎢ ⎣ 

−1 1 0 0 · · · 0 0 0 

0 −1 1 0 · · · 0 0 0 

. . . . . . . . . . . . . . . . . . . . . . . . 

0 0 0 0 · · · 0 −1 1 

⎤ 

⎥ ⎦ 

. (20)

Moreover, for any m −, m + ∈ N such that m − + m + ≤ n, let 

ιm ± = 

(
1 

m + 
1 

′ 
m + , 0 , . . . , 0 , − 1 

m −
1 

′ 
m −

)′ 
∈ R 

n (21)

where 1 m ± = (1 , 1 , . . . , 1) ′ ∈ R 

m ±
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Theorem 2. Let f r m ±,t+1 
(r) be the probability density of the (m + , m −) -cross sectional momentum return r m ±,t+1 . If ( r ′ 

t+1 
, r ′ t ) ′ 

satisfies Assumption 1 , then we have 

f r m ±,t+1 
(r) = 

∑ 

τ∈ S n 
φ1 

(
r;μτ,m ±,t+1 , ς 

2 
r,τ,t+1 

)
�n −1 

[
0 ;μτ,t + ς 

−2 
r,τ,t+1 

(
r − μτ,m ±,t+1 

)
λτ,t , �x | r,τ,t 

]
, (22) 

where μτ,m ±,t+1 = ι′ m ± P τμt+1 , μτ,t = D n −1 P τμt , 

ς 

2 
r,τ,t+1 = ι′ m ± P τ�t +1 ,t +1 P 

′ 
τ ιm ± , 

λτ,t = D n −1 P τ�t ,t +1 P 
′ 
τ ιm ± , 

�x | r,τ,t = D n −1 P τ�t,t P 
′ 
τ D 

′ 
n −1 − ς 

−2 
r,τ,t+1 λτ,t λ

′ 
τ,t . 

Proof. Refer to A.2 . �

The intuition behind the expression in (22) is that there are n ! possible orderings of asset returns over the ranking period,

corresponding to the elements of S n , and these rankings determine a partition of R 

n into n ! mutually disjoint subsets. The

summand in (22) corresponding to τ ∈ S n is then the CSM return density at r conditional on r t being in the element of the

partition of R 

n corresponding to the permutation τ . 

Although compact in form, expression (22) is not convenient for the purposes of computing the moments of r m ±,t+1 ,

since the variable r appears in both the univariate normal densities and their associated weights. Using an alternative de-

composition of f r τ,m ± ,t+1 , x τ,t (r, x ) , by conditioning r m ±,t+1 on x τ , t , allows the elimination of the dependence of r from the

weights and gives the following equivalent expression for f r m ± ,t+1 
(r) . 

Corollary 1. If the assumption in Theorem 2 is satisfied, then 

f r τ,m ±,t+1 
(r) = 

∑ 

τ∈ S n 

∫ 
x ∈ R n −1 

−
φ1 

(
r;μτ,m ±,t+1 | x , ς 

2 
r| x ,τ,t+1 

)
φn −1 

(
x ;μτ,t , �x ,τ,t 

)
d x , (23) 

where �x ,τ,t = D n −1 P τ �t,t P 
′ 
τ D 

′ 
n −1 

, ς 

2 
r| x ,τ,t+1 

= ς 

2 
r,τ,t+1 

− λ′ 
τ,t �

−1 
x ,τ,t λτ,t , and 

μτ,m ±,t+1 | x = μτ,m ±,t+1 + λ′ 
τ,t �

−1 
x ,τ,t ( x − μτ,t ) 

Proof. Refer to A.3 . �

What insights can we glean from these rather formidable formulae, especially the expression for f r m ±,t+1 
(r) in (22) ?

Firstly, we can consider special cases of these expressions that simplify considerably, as we do in Proposition 2, Theo-

rem 3 and Corollary 2 . However, can we also get insights from the general formulae directly? We can answer this by an

intuitive argument that allows us to decompose, for example, the expression in (22) as follows. Since f r m ±,t+1 
(r) is a proba-

bility density function (pdf), integrating the left-hand side of (22) over R gives 1. Next, all n ! terms on the right-hand side

are non-negative by inspection, and so the integral of each term is non-negative and bounded by 1. Hence we can re-scale

each term to convert it into a pdf and the overall result will be a mixture of these pdfs. Each term then bears a strong

resemblance to a skew-normal, and so we can assert that the pdf of CSM returns is a mixture of pdfs closely related to

skew-normals, thus, intuitively the general formula gives us insights into how the pdf of CSM return density is built up

from such densities, where each component arises from an ordering of the underlying asset returns over the ranking pe-

riod. Indeed, we can say more. We see that the individual components of our mixture distribution are members of what

is known as the unified skew-normal (SUN) family of distributions as defined in Arellano-Valle and Azzalini (2006) . Thus

we can identify our CSM distribution as a mixture of SUN densities. Much is known about these densities which have been

introduced in the literature to capture multivariate non-normality. Intuitively, this tells us that we would expect skewness

and excess kurtosis in CSM returns, which is consistent with well-established empirical findings, but have not previously

been established analytically. Finally, the very fact that f r m ±,t+1 
(r) is a mixture tells us that multi-modality can be expected.

These results, although useful as theoretical descriptions of the CSM return density, are not particularly suited for the

understanding of empirical results. This is for a number of reasons. Firstly, for a reasonable size, n , of underlying assets,

the density consists of a large number of terms as discussed in Section 4 . Secondly, the representation of the density is

not in terms of the more fundamental parameters that would be estimated in practice. However, in special cases, we can

derive simpler and practically meaningful expressions such as those obtained in Section 4 , and analysed in Section 5 , for

the 2-asset case, which also provide useful insights. 

We therefore consider other special cases that will shed light on Theorem 2 . Firstly, the density, f r m ±,t+1 
(r) , simplifies

significantly when the asset returns have the same mean and pairwise covariances. This result is of some interest since it

gives conditions under which the CSM return density is normal. 

Corollary 2. If ( r ′ t+1 , r 
′ 
t ) 

′ satisfies Assumption 1 , and the means and covariances in (9) take the degenerate form 

μu = μu 1 n , �u, v = δu, v σu σv (1 − ρu, v ) I n ×n + ρu, v σu σv 1 n 1 

′ 
n , (24) 

where μu ∈ R , σu ∈ R + , ρu, v ∈ (−1 , 1) , and u, v ∈ { t, t + 1 } , then in the notation of Theorem 2 we have 

f r m ±,t+1 
(r) = φ1 

(
r; 0 , ς 

2 
r, id ,t+1 

)
, 
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where id ∈ S n is the identity element that leaves all asset indices unchanged. 

Proof. Refer to A.4 . �

Another special case in which f r m ±,t+1 
(r) simplifies considerably is when r t and r t+1 are independent. 

Theorem 3. If ( r ′ t+1 , r 
′ 
t ) 

′ satisfies Assumption 1 , and r t and r t+1 are independent, then 

f r m ±,t+1 
(r) = 

∑ 

τ∈ S n 
φ1 

(
r;μτ,m ±,t+1 , ς 

2 
r,τ,t+1 

)
�n −1 

[
0 ;μτ,t , D n −1 P τ�t,t P 

′ 
τ D 

′ 
n −1 

]
, (25)

and 
∑ 

τ∈ S n �n −1 

[
0 ;μτ,t , D n −1 P τ �t,t P 

′ 
τ D 

′ 
n −1 

]
= 1 . 

Proof. Since λτ,t = 0 n −1 in this case, (25) follows immediately from (22) , and the final statement follows from integrating

both sides of (25) over r ∈ R . �

The decomposition in (25) is of particular interest, since it expresses f r m ±,t+1 
(r) as a mixture of univariate normal den-

sities with weights summing to unity. The next result establishes the impact of the lengths of the ranking and holding

periods, l r and l h respectively, on the distribution of the CSM returns. 

Theorem 4. Let l r and l h and the lengths of ranking and holding periods respectively. Suppose μi , t � = μj , t if i � = j , and by reorder-

ing the indices if necessary assume μ1 ,t > μ2 ,t > . . . > μn,t . 

a) If l h is fixed, and (1 , 2 , . . . , n ) ∈ S n denotes the identity permutation, then 

lim 

l r →∞ 

f r m ±,t+1 
(r) → φ1 

(
r;μ(1 , 2 , ... ,n ) ,m ±,t+1 , ς 

2 
r, id ,t+1 

)
. (26)

That is, the distribution of r m ±,t+1 tends to univariate normal as l r → ∞ . 

b) If l r is fixed, then 

lim 

l h →∞ 

f r m ±,t+1 
(r) → 

∑ 

τ∈ U 
φ1 

(
r;μτ,m ±,t+1 , ς 

2 
r,τ,t+1 

)
+ 

∑ 

τ∈ V 
φ1 

(
r;μτ,m ±,t+1 , ς 

2 
r,τ,t+1 

)
�n −1 

[
0 ;μτ,t , �x | r,τ,t 

]
, (27)

where U = { τ ∈ S n | μτ,m ±,t+1 λτ,t � 0 } and V = { τ ∈ S n | μτ,m ±,t+1 λτ,t = 0 } . In particular, if r t and r t+1 are independent and

μτ,m ±,t+1 � = 0 for some τ ∈ S n , then f r m ±,t+1 
(r) becomes multimodal with one mode approaching ∞ and another approaching

−∞ . 

Proof. Refer to A.5 . �

There are numerous examples in the literature on ranking periods of up to three years and similar lengths of time for

holding periods, including, for example, Jegadeesh and Titman (1993) , Chan et al. (1996) and Sefton and Scowcroft (2004) .

There may be some interesting simplifications if we used one or two factor models as in Grundy and Martin (2001) . Their

structure assumes cross-sectional randomness in parameters which would extend and complicate Theorem 2 , but the idea

needs exploring further and in future work we hope to look at the implications of a Sharpe 1-factor model in analysing

Theorem 2 . 

The moments of CSM returns in the general case are now presented in Proposition 5 . For any p ∈ N , denote by

μp (r m ±,t+1 ) the p -th moment of r m ±,t+1 . Then μp (r m ±,t+1 ) can be obtained in terms of the moments of truncated mul-

tivariate normal distributions. 

Proposition 5. If ( r ′ t+1 , r 
′ 
t ) 

′ satisfies Assumption 1 , then 

μp (r m ±,t+1 ) = 

∑ 

τ∈ S n 

p ∑ 

k =0 , 
k even 

(
p 

k 

)
(k − 1)!! ς 

k 
r| x ,τ,t+1 

p−k ∑ 

l=0 

(
p − k 

l 

)
μp−k −l 

τ,m ±,t+1 

∫ 
x ∈ R n −1 

−

(
λ′ 

τ,t �
−1 
x ,τ,t 

(
x − μτ,t 

))l 
φn −1 

(
x ;μτ,t , �x ,τ,t 

)
d x , 

(28)

where �x , τ , t and ς 

2 
r| x ,t+1 ,τ

are as defined in Corollary 1 . 

Proof. Refer to A.6 . �

In the special case where r t and r t+1 are independent, a more explicit expression for μp (r m ±,t+1 ) can be obtained. 

Corollary 3. If ( r ′ t+1 , r 
′ 
t ) 

′ satisfies Assumption 1 , and r t and r t+1 are independent, then 

μp (r m ±,t+1 ) = 

∑ 

τ∈ S n 
�n −1 

[
0 ;μτ,t , �x ,τ,t 

] p ∑ 

k =0 , 
k even 

(
p 

k 

)
(k − 1)!! ς 

k 
r,τ,t+1 μ

p−k 
τ,m ±,t+1 

. (29)
Proof. Refer to A.7 . �
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8. Conclusion 

In this paper, analytic expressions for the density and the moments of cross sectional momentum (CSM) returns were

derived under the assumption that underlying asset returns are multivariate normal. The general case is quite involved, and

can be described as a mixture of the unified skew-normal family of distributions. The weights of the mixture correspond to

different regime probabilities and could be analysed empirically although it would be a computationally challenging task.

Whilst the general case sheds light on some features of CSM returns, we can analyse the density under certain special

conditions such as those considered in Corollary 1, Theorems 3 , and 4 . 

In the case of two assets, one long and one short, it is possible to analyse the problem fairly succinctly, and we can iden-

tify many of the features reported in the empirical literature. Generalizations of the results to other return processes, such

as elliptical distributions, are possible. Linkages between momentum returns to market states, which has been the subject

of empirical research, for example by Chordia and Shivakumar (2002) and Cooper et al. (2004) , could also be considered

using an extension of the approach introduced in this paper. 

Appendix A. Proofs 

A1. Preliminary results 

We begin with some known results on the multivariate normal distribution. 

Theorem 5. Let n 1 , n 2 ∈ N and suppose x ∼ N n 1 + n 2 ( μ, �) , where 

x = 

[
x 1 
x 2 

]
, μ = 

[
μ1 

μ2 

]
, � = 

[
�1 , 1 �1 , 2 

�2 , 1 �2 , 2 

]
, (A.1) 

with x i , μi ∈ R 

n i and �i, j ∈ R 

n i ×n j for 1 ≤ i , j ≤ 2, and � positive definite. Then the conditional distribution of x 1 given x 2 is

normal with mean and covariance 

μx 1 | x 2 = μ1 + �1 , 2 �
−1 
2 , 2 ( x 2 − μ2 ) , (A.2) 

�x 1 | x 2 = �1 , 1 − �1 , 2 �
−1 
2 , 2 �2 , 1 , (A.3) 

respectively, and φn 1 + n 2 ( x ;μ, �) decomposes as 

φn 1 + n 2 ( x ;μ, �) = φn 1 ( x 1 ;μx 1 | x 2 , �x 1 | x 2 ) φn 2 ( x 2 ;μ2 , �2 , 2 ) . (A.4) 

Proof. Refer to Muirhead (1982) Theorem 1.2.11. �

Recall that the permutation group S n acts naturally on the set of polynomials, R [ x 1 , . . . , x n ] by the rule 

τ p(x 1 , . . . , x n ) = p(x τ1 
, . . . , x τn 

) 

for any polynomial p ∈ R [ x 1 , . . . , x n ] and τ ∈ S n . Now, let n 1 , n 2 ∈ N be fixed, and let p n 1 , 2 n 2 ∈ R [ x 1 , . . . , x n 1 +2 n 2 
] be the poly-

nomial 

p n 1 , 2 n 2 (x 1 , . . . , x n 1 +2 n 2 ) = 

( 

n 1 ∏ 

i =1 

x i 

) ( 

n 2 ∏ 

i =1 

(x n 1 +2 i − x n 1 +2 i −1 ) 
2 

) 

. (A.5) 

Denote by Z ( n 1 , 2 n 2 ) the stabilizer of p n 1 , 2 n 2 under the action of S n 1 +2 n 2 
so that 

Z(n 1 , 2 n 2 ) = { τ ∈ S n 1 +2 n 2 | τ p n 1 , 2 n 2 = p n 1 , 2 n 2 } , (A.6) 

and let Q(n 1 , 2 n 2 ) = S n 1 +2 n 2 
/Z(n 1 , 2 n 2 ) be the quotient group, 4 with elements of Q ( n 1 , 2 n 2 ) identified with their coset rep-

resentatives τ ∈ S n 1 +2 n 2 
. Finally, define 

{ 1 , 2 , . . . , n } m = 

m ∏ 

i =1 

{ 1 , 2 , . . . , n } = { (i 1 , i 2 , . . . , i m 

) | 1 ≤ i j ≤ n, 1 ≤ j ≤ m } (A.7) 

as the m -fold Cartesian product of { 1 , 2 , . . . , n } . 
Theorem 6. Let x ∼ N n ( μ, �) , where n ∈ N , μ ∈ R 

n and � ∈ R 

n ×n is positive definite. Given κ = (κ1 , . . . , κm 

) ∈ { 1 , 2 , . . . , n } m ,

if the κ-th moment of x is defined by 

μκ( x ) = E 

[ 

m ∏ 

i =1 

x κi 

] 

, (A.8) 
4 Refer to Rotman (1995) Chapter 2 for the details on quotient groups. 
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then 

μκ( x ) = 

∑ 

k,l∈ N 
k +2 l= m 

∑ 

τ∈ Q(k, 2 l) 

( 

k ∏ 

i =1 

μκτi 

) ( 

l ∏ 

i =1 

�κτk +2 i −1 
,κτk +2 i 

) 

. (A.9)

Proof. Refer to Withers (1985) Theorem 1.1. �

Corollary 4. Let x ∼ N 1 (μ, σ 2 ) . Then for any m ∈ N , the m-th moment of x is given by 

μm 

(x ) = 

m ∑ 

i =0 
i e v en 

(
m 

i 

)
(i − 1)!! σ i μm −i , (A.10)

where k !! = 

∏ � k 
2 
� 

i =0 
(k − 2 i ) is the double factorial of k ∈ N . 

Proof. Follows from Theorem 6 , since the inner sum in (A.9) , corresponding to 2 l = i, consists of 
(

m 

i 

)
(i − 1)!! identical terms

all equal to σ i μm −i . �

Processes that play a key role in the investigation of CSM returns are z τ , t defined in (8) , and the next result provides the

distribution of these processes under Assumption 1 . 

Lemma 1. If the return process r t satisfies Assumption 1 , then z τ , t follows a multivariate normal distribution for all τ ∈ S n
and t ∈ N . In particular, z τ , t is multivariate normal if r t ∼ VARMA (p, q ) , and either ( r ′ 0 , . . . , r ′ p−1 ) 

′ is multivariate normal and

independent of ε t , or the VARMA (p, q ) process satisfies conditions for weak stationarity. 

Proof. For any τ ∈ S n , let P τ be the n × n permutation matrix corresponding to τ , let ιm ± be as defined in (21) , and let

D n −1 ∈ R 

(n −1) ×n be as defined in (20) . Then x τ,t = D n −1 P τ r t and r τ,m ±,t+1 = ι′ m ± P τ r t+1 , and so z τ , t can be written as 

z τ,t = 

[
r τ,m ±,t+1 

x τ,t 

]
= 

[
ι′ m ± P τ O 1 ×n 

O (n −1) ×n D n −1 P τ

][
r t+1 

r t 

]
. (A.11)

Hence, z τ , t is a linear transformation of 
(
r ′ t+1 , r 

′ 
t 

)′ 
, which is assumed to be multivariate normal, and so z τ , t is itself mul-

tivariate normal. �

Recall that under Assumption 1 , ( r ′ t+1 , r 
′ 
t ) 

′ is distributed according to (9) and, as discussed in Section 2 , the 2-period

model with such returns is quite general since models with longer ranking and holding periods can be transformed to a

model of this type. The decomposition of z τ , t in (A.11) then establishes the next result. 

Proposition 6. Let ( r ′ t+1 , r 
′ 
t ) 

′ be given by (9) . Then for any τ ∈ S n and t ∈ N , 

z τ,t ∼ N 

([
ι′ m ± P τμt+1 

D n −1 P τμt 

]
, 

[
ι′ m ± P τ�t +1 ,t +1 P 

′ 
τ ιm ± ι′ m ± P τ�t+1 ,t P 

′ 
τ D 

′ 
n −1 

D n −1 P τ�t ,t +1 P 
′ 
τ ιm ± D n −1 P τ�t,t P 

′ 
τ D 

′ 
n −1 

])
. (A.12)

A2. Proof of Theorem 2 

For each permutation τ ∈ S n , define a subset R τ ⊂ R 

n by 

R τ = 

{
(x 1 , . . . , x n ) ∈ R 

n | x τi +1 
− x τi 

< 0 

}
. (A.13)

Then R τ ∩ R υ = ∅ for τ � = υ ∈ S n , and R 

n = ∪ τ∈ S n R τ up to a set of measure zero, and so 

f r m ± ,t+1 
(r) = 

∫ 
r ∈ R n 

f r m ± ,t+1 , r t (r, r ) d r 

= 

∑ 

τ∈ S n 

∫ 
r ∈R τ

f r m ± ,t+1 , r t (r, r ) d r = 

∑ 

τ∈ S n 

∫ 
r ∈R τ

f r τ,m ± ,t+1 , r t (r, r ) d r , 

where the final equality follows from the fact that the summands of r m ±,t+1 in (11) , other than the term I { x τ,t ≺0 n −1 } r τ,m ±,t+1 ,

vanish on R τ . Now, for each τ ∈ S n consider the integral 

I τ (r) = 

∫ 
r ∈R τ

f r τ,m ± ,t+1 , r t (r, r ) d r , 

and let g τ : R 

n → R 

n be defined by 

g τ ( r ) = 

[
1 O 1 ×(n −1) 

O (n −1) ×1 D n −1 

]
P τ r = 

[
r τ1 

x τ

]
, 
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where x τ = 

(
x τ1 

, . . . , x τn −1 

)′ 
and x τi 

= r τi +1 
− r τi 

. Then g τ is invertible, and the Jacobian of g τ is 1. So making the change of

variables from r to (r τ1 
, x ′ τ ) ′ , we obtain 

I τ (r) = 

∫ 
(r τ1 

, x ′ τ ) ′ ∈ R ×R 
n −1 
−

f r τ,m ± ,t+1 ,r τ1 
, x τ,t 

(r, s, x τ ) ds d x τ , 

since x τi 
< 0 on R τ for 1 ≤ i ≤ n − 1 . Applying the properties of conditional densities gives 

I τ (r) = 

∫ 
x τ ∈ R n −1 

−

∫ ∞ 

−∞ 

f r τ1 
, x τ,t | r τ,m ± ,t+1 

(s, x τ | r) f r τ,m ± ,t+1 
(r) ds d x τ

= f r τ,m ± ,t+1 
(r) 

∫ 
x τ ∈ R n −1 

−
J τ ( x τ , r) f x τ,t | r τ,m ± ,t+1 

( x τ | r) d x τ , 

where 

J τ ( x τ , r) = 

∫ ∞ 

−∞ 

f r τ1 
| x τ,t ,r τ,m ± ,t+1 

(s | x τ , r) ds. 

But the conditional density of r τ1 
given 

(
x τ,t , r τ,m ±,t+1 

)
is univariate normal by Theorem 5 , and so J τ ( x τ , r) = 1 for all

( x τ , r) ∈ R 

n −1 
− × R and 

I τ (r) = f r τ,m ± ,t+1 
(r) 

∫ 
x τ ∈ R n −1 

−
f x τ,t | r τ,m ± ,t+1 

( x τ | r) d x τ . (A.14) 

Now, by Proposition 6 , we have 

z τ,t = 

[
r τ,m ±,t+1 

x τ,t 

]
∼ N 

([
μτ,m ±,t+1 

μτ,t 

]
, 

[
ς 

2 
r,τ,t+1 λ′ 

τ,t 

λτ,t �x ,τ,t 

])
, (A.15) 

where �x ,τ,t = D n −1 P τ �t,t P 
′ 
τ D 

′ 
n −1 , and so setting x 1 = x τ,t and x 2 = r τ,m ±,t+1 in Theorem 5 gives 

f x τ,t | r τ,m ± ,t+1 
( x τ | r) = φn −1 

(
x ;μτ,t + ς 

−2 
r,τ,t+1 

(
r − μτ,m ±,t+1 

)
λτ,t , �x | r,τ,t 

)
. (A.16) 

Computing the integral of f x τ,t | r τ,m ±,t+1 
( x τ | r) over x τ ∈ R 

n −1 
− gives 

I τ (r) = f r τ,m ± ,t+1 
(r) �n −1 

[
0 ;μτ,t + ς 

−2 
r,τ,t+1 

(
r − μτ,m ±,t+1 

)
λτ,t , �x | r,τ,t 

]
, 

and since r τ,m ±,t+1 ∼ N 

(
r̄ τ,m ±,t+1 , ς 

2 
r,τ,t+1 

)
, we have 

I τ (r) = φ1 

(
r;μτ,m ±,t+1 , ς 

2 
r,τ,t+1 

)
�n −1 

[
0 ;μτ,t + ς 

−2 
r,τ,t+1 

(
r − μτ,m ±,t+1 

)
λτ,t , �x | r,τ,t 

]
. 

Summing I τ (r) over τ ∈ S n gives (22) . 

A.3. Proof of Corollary 1 

It follows from the definition of conditional densities that 

f x τ,t | r τ,m ± ,t+1 
( x τ | r ) f r τ,m ± ,t+1 

(r ) = f r τ,m ± ,t+1 | x τ,t 
(r | x τ ) f x τ,t 

( x τ ) , 

and substituting the right-hand side into the expression for I τ (r) in (A.14) gives 

I τ (r) = 

∫ 
x τ ∈ R n −1 

−
f r τ,m ± ,t+1 | x τ,t 

(r | x τ ) f x τ,t 
( x τ ) d x τ . 

Setting x 1 = r τ,m ±,t+1 and x 2 = x τ,t in Theorem 5 implies 

f r τ,m ± ,t+1 | x τ,t 
(r, x τ ) = φ1 

(
r;μτ,m ±,t+1 | x , ς 

2 
r| x ,τ,t+1 

)
, 

and since f x τ,t ( x τ ) = φn −1 

(
x τ ;μτ,t , �x ,τ,t 

)
, we have 

I τ (r) = 

∫ 
x τ ∈ R n −1 

−
φ1 

(
r;μτ,m ±,t+1 | x , ς 

2 
r| x ,τ,t+1 

)
φn −1 

(
x τ ;μτ,t , �x ,τ,t 

)
d x τ

and summing over τ ∈ S n gives (23) . 

A.4. Proof of Corollary 2 

If μu and �u, v are as given in (24) , then r̄ m ±,τ,t+1 = 0 , x̄ τ,t = 0 , and λτ,t = 0 for all τ ∈ S n , and the remaining terms that

appear in (22) are independent of the permutation τ ∈ S n . So the summands are identical, and since there are n ! summands,

we have 

f r m ±,t+1 
(r) = n ! φ1 

(
r; 0 , ς 

2 
r, id ,t+1 

)
�n −1 

[
0 ; 0 , �x | r, id ,t 

]
. 

Integrating both sides over r ∈ R , and noting that the cumulative distribution term on the right-hand side is independent of

r , gives �n −1 

[
0 ; 0 , �x | r, id ,t 

]
= 1 /n ! and so the result follows. 
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A.5. Proof of Theorem 4 

Using the notation from Theorem 2 , we have μτ,t = O (l r ) and λτ,t = O ( 
√ 

l r ) as l h → ∞ , and ς 

2 
r,τ,t+1 

= O (l h ) , μτ,m ±,t+1 =
O (l h ) , and λτ,t = O ( 

√ 

l h ) as l r → ∞ . It follows that μτ,t + ς 

−2 
r,τ,t+1 

(
r − μτ,m ±,t+1 λτ,t 

)
→ μτ,t as l h → ∞ . Since μ1 ,t >

μ2 ,t > . . . > μn,t by assumption, we have lim l h →∞ 

(
μi +1 ,t − μi,t 

)
→ −∞ for all 1 ≤ i ≤ n − 1 , and so lim l r →∞ 

μid ,t →
(−∞ , −∞ , . . . , −∞ ) . For id � = τ ∈ S n , we have lim l h →∞ 

(
μτi +1 ,t 

− μτi ,t 

)
→ ∞ for some 1 ≤ i ≤ n − 1 , and since �x | r,τ,t =

O (l r ) , 

lim 

l r →∞ 

�n −1 

[
0 ;μτ,t + ς 

−2 
r,τ,t+1 

(
r − μτ,m ±,t+1 

)
λτ,t , �x | r,τ,t 

]
→ δτ, id . 

Hence the only non-zero summand in (22) , as l r → ∞ , is the term corresponding to the identity permutation, and this

establishes (a). Next, note that as l h → ∞ , 

μτ,t + ς 

−2 
r,τ,t+1 

(
r − μτ,m ±,t+1 

)
λτ,t → −ς 

−2 
r,τ,t+1 μτ,m ±,t+1 λτ,t = O ( 

√ 

l h ) , (A.17)

so that lim l h →∞ 

�n −1 

[
0 ;μτ,t + ς 

−2 
r,τ,t+1 

(
r − μτ,m ±,t+1 

)
λτ,t , �x | r,τ,t 

]
→ 0 if and only if −μτ,m ±,t+1 λτ,t � 0 , which implies (27) .

For the final statement in (b), note that λτ,t = 0 if r t and r t+1 are independent so that V = S n and (27) becomes 

lim 

l h →∞ 

f r m ±,t+1 
(r) → 

∑ 

τ∈ S n 
φ1 

(
r;μτ,m ±,t+1 , ς 

2 
r,τ,t+1 

)
�n −1 

[
0 ;μτ,t , �x | r,τ,t 

]
, 

which is a sum of univarite normals. Now, since μτ,m ±,t+1 � = 0 for some τ ∈ S n by assumption, we may suppose, without loss

of generality, that μτ,m ±,t+1 > 0 . But then μτ ,m ±,t+1 = −μτ,m ±,t+1 for some τ  ∈ S n , and since μτ,m ±,t+1 = O (l h ) , we have

μτ,m ±,t+1 → ∞ and μτ ,m ±,t+1 → −∞ as l h → ∞ , which shows that there are constituent normal densities on the right-hand

side of (A.17) with means that tend to −∞ and + ∞ . This completes the proof. 

A.6. Proof of Proposition 5 

Using the density, f r m ± ,t+1 
(r) , from (23) allows μp (r m ±,t+1 ) to be expressed as the sum 

∑ 

τ∈ S n 

∫ 
x ∈ R n −1 

−
φn −1 

(
x ;μτ,t , �x ,τ,t 

) ∫ 
r∈ R 

r p φ1 

(
r;μτ,m ±,t+1 | x , ς 

2 
r| x ,τ,t+1 

)
d r d x . 

Now, applying the expression for the univariate moments from (A.10) and the definition of r̄ τ,m ±,t+1 | x from Corollary 1 , inner

integrals can be computed as follows: ∫ 
r∈ R 

r p φ1 

(
r;μτ,m ±,t+1 | x , ς 

2 
r| x ,τ,t+1 

)
dr 

= 

p ∑ 

k =0 
k even 

(
p 

k 

)
(k − 1)!! ς 

k 
r| x ,τ,t+1 

(
μτ,m ±,t+1 + λ′ 

τ,t �
−1 
x ,τ,t ( x − μτ,t ) 

)p−k 

= 

p ∑ 

k =0 
k even 

(
p 

k 

)
(k − 1)!! ς 

k 
r| x ,τ,t+1 

p−k ∑ 

l=0 

(
p − k 

l 

)
μp−k −l 

τ,m ±,t+1 

(
λ′ 

τ,t �
−1 
x ,τ,t ( x − μτ,t ) 

)l 
. 

Substituting back into the expression for μp (r m ±,t+1 ) gives (28) . 

A.7. Proof of Corollary 3 

In this case, we have λτ,t = 0 n −1 , and the only non-zero term in the innermost sum in (28) is where l = 0 . The corre-

sponding integral reduces to ∫ 
x ∈ R n −1 

−
φn −1 

(
x ;μτ,t , �x ,τ,t 

)
d x = �n −1 

[
0 ;μτ,t , �x ,τ,t 

]
, 

and substituting back into (28) gives (29) . 

A.8. Proof of Proposition 2 

Let (1 2) ∈ S 2 be the identity permutation, and denote by (2 1) ∈ S 2 the non-trivial permutation. Then since x (1 , 2) ,u = r 2 ,u −
r 1 ,u and x (2 1) ,u = r 1 ,u − r 2 ,u for u ∈ { t, t + 1 } , in the notation introduced in Theorem 2 

ς 

2 
r,τ,t+1 = ς 

2 
t+1 , λτ,t = −� t ,t +1 ς t ς t+1 , 

ς 

2 
r,τ,t = ς 

2 
t , �x | r,τ,t = ς 

2 
t+1 

(
1 − � 

2 
t ,t +1 

)
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for all τ ∈ S 2 , and 

μ(1 2) , 1 ±,t+1 = −μt+1 , μ(2 1) , 1 ±,t+1 = μt+1 , 

μ(1 2) ,t = μt , μ(2 1) ,t = −μt , 

and substituting these terms into (22) gives the density in (12) . 

A.9. Proof of Theorem 1 

Using the notation from Proposition 2 and computing directly the terms λτ , t , �x , τ , t , ς 

2 
r| x,t+1 ,τ

, and μτ, 1 ±,t+1 | x defined

in Corollary 1 gives 

ς 

2 
t = σ 2 

1 ,t + σ 2 
2 ,t − 2 ρt σ1 ,t σ2 ,t = �x,τ,t , (A.18) 

ς t ,t +1 = ρ1 , 1 σ1 ,t σ1 ,t+1 + ρ2 , 2 σ2 ,t σ2 ,t+1 − ρ1 , 2 σ1 ,t σ2 ,t+1 − ρ2 , 1 σ2 ,t σ1 ,t+1 = −λτ,t , (A.19) 

ς 

2 
r| x,t+1 ,τ = ς 

2 
t+1 −

ς 

2 
t ,t +1 

ς 

2 
t 

, (A.20) 

μτ, 1 ±,t+1 = −ε τμt+1 = −μτ,t+1 , (A.21) 

where ε (1 2) = 1 and ε (2 1) = −1 . The integral appearing in (28) can be computed explicitly in this case and gives 

I l,τ,t = 

∫ 
x ∈ R −

(
λτ,t �

−1 
x,τ,t ( x − μτ,t ) 

)l 
φ1 ( x ;μτ,t , �x,τ,t ) dx 

= λl 
τ,t �

− l 
2 

x,τ,t 

∫ 0 

−∞ 

( 

x − μτ,t √ 

�x,τ,t 

) l 

φ1 ( x ;μτ,t , �x,τ,t ) dx 

= λl 
τ,t �

− l 
2 

x,τ,t 

∫ −μτ,t √ 

�x,τ,t 

−∞ 

z l φ1 ( z ) dz. 

If we define ητ,t = −μτ,t / 
√ 

�x,τ,t and J l,τ,t = 

∫ ητ,t 
−∞ 

z l φ1 (z) dz, then direct calculations establish that J 0 ,τ,t = �1 [ ητ,t ] , J 1 ,τ,t =
−φ1 (ητ,t ) , and for l ≥ 2 

J l,τ,t = −ηl−1 
τ,t φ1 (ητ,t ) + (l − 1) J l−2 ,τ,t . 

Substituting I l , τ , t back into (28) and simplifying the resulting expressions give the four moments of r 1 ±,t+1 . 

A.10. Proof of Proposition 3 

It follows from the expression for μr 1 ±,t+1 
in (13) that 

μr 1 ±,t+1 
= μ̄t+1 ( 2�1 [ μt /ς t ] − 1 ) l h + 2 � t ,t +1 ς̄ t+1 φ1 ( μt /ς t ) 

√ 

l h , 

which is a quadratic in 

√ 

l h . Note that μr 1 ±,t+1 
, as a function of 

√ 

l h , is concave down if and only if the leading coefficient is

negative, and the maximum occurs at positive 
√ 

l h if and only if the coefficients are of opposite signs, which are equivalent

to (2�1 (μt /ς t ) − 1) ̄μt+1 < 0 and � t ,t + t > 0 . Solving for the turning point, and squaring, gives the expression for l  
h 

in (17) . 

A.11. Proof of Proposition 3 

Since σ1 ,t+1 = σ2 ,t+1 by assumption, we have lim ρt+1 → 1 ς t+1 = 0 , and it follows from (16) that 

lim 

ρt+1 → 1 
σ 2 

r 1 ±,t+1 
= 

(
1 − ( 2�1 [ μt /ς t ] − 1 ) 

2 
)
μ2 

t+1 , 

so that substituting into (14) gives 

lim 

ρt+1 → 1 
kurt r 1 ±,t+1 

= lim 

ρt+1 → 1 

μ4 
t+1 

σ 4 
r 1 ±,t+1 

= 

1 (
1 − ( 2�1 [ μt /ς t ] − 1 ) 

2 
)2 

, 

which simplifies to (18) . 
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